121 resultados para polysulphated glycosaminoglycan
Resumo:
Rheumatoid arthritis (RA) is systemic auto imune disorder. It is caracterized by chronic inflammation of joints leading to progressive erosion of cartilage and bone. We investigated the effect of the administration of fucoidan, sulfated polysaccharides, from algae Fucus vesiculosus in the acute (6h) in zymosan-induced arthritis (AZy). Wistar rats (180-230 g) were used for all groups experimental. Non-treated animals received just intraarticular injection of 1 mg the zymosan, control group received intraarticular injection of 50 µL the saline, groups received either fucoidan of Fucus vesiculosus (15, 30, 50 or 70 mg/Kg) or parecoxib (1 mg/Kg) 1 hour after injection of zymosan. After 6 h, the articular exudates were collected for evaluation of the cell influx and nitrite (Griess reaction) release. The sinovial membranes and articular cartilages were excised for histopathological analysis and by determination of the glycosaminoglycan (GAG), respectively. ZyA led to increased NO and cell influx into the joints. Therapeutic administration of the fucoidan or parecoxib did significantly inhibited the cell influx and the synovitis, as compared to non-treated rats (p<0,05), though being able to reduced NO release. Representative agarose gel electrophoresis of the GAGs, the content of condroitin-sulphate was observed during the process. These findings suggest that the fucoidan from Fucus vesiculosus has potential anti-inflammatory activity
Resumo:
The fucoidan from Fucus vesiculosus is known for having diverse biological properties. This study analyzed the therapeutic action of populations of commercial fucoidan (F. vesiculosus) on zymosan-induced arthritis. Three populations of fucoidan were obtained after acetone fractionation; these were denominated F1 (52.3%), F2 (36.7%) and F3 (10.7%). Chemical analyses showed that F1 contained the largest amount of sulfate ion. The electrophoretic profile shows that the commercial or total fucoidan (TF), different from the other fucoidans and from glycosaminoglycan patterns, is quite polydisperse, which indicates that it is composed of a mixture of sulfate polysaccharides. On the other hand, the fucoidans obtained from TF showed only an electrophoretic band with much lower polydispersion than that observed for TF. Fucoidan F2 showed a migration between fucoidans F1 and F3. Owing to the small amount of mass obtained from F3, we used only fucoidans F1 and F2 in the induced arthritis tests. After 1 hour of induction, we administered F1 or F2 (10, 25 and 50 mg/kg i.p.) or diclofenac sodium (10 mg/kg i.p.) or lumiracoxib (5 mg/kg o.a.) or L-NAME (30 mg/kg i.p.). After 6 hours, we performed analyses of cell influx and nitrite levels in addition to histopathological analysis. Fucoidans F1 and F2 were more potent both in decreasing the number of leukocytes and the amount of nitric oxide found in the synovial fluid. This indicates that the anti-inflammatory mechanism of these fucoidans is not only related to selectin block, but also to nitric oxide synthesis inhibition
Resumo:
PURPOSE. Amniotic membrane transplantation (AMT) has been used as a graft or as a dressing in ocular surface reconstruction, facilitating epithelization, maintaining normal epithelial phenotype, and reducing inflammation, vascularization, and scarring. The corneal transparency is due, at least in part, to the arrangement in orthogonal lamellae of collagen fibrils, surrounded by proteoglycans (PGs). These PGs regulate fibrilogenesis, the matrix assembly, and ultimately the corneal transparency. The purpose of the present study was to investigate the effects of AMT upon the corneal PGs after severe limbal injury.METHODS. Experiments were performed on the right corneas of 22 New Zealand female albino rabbits, and their left corneas were used as matched controls. These animals were divided into 3 groups: G1 (n = 10): total peritomy and keratolimbectomy, followed by application of 0.5 M NaOH; G2 (n = 10): submitted to the same trauma as G1, and treated by AMT; G3: no trauma, only AMT (n = 2). The right corneas of G2 and G3 were covered by DMSO 4 cryopreserved human amniotic membrane, fixed by interrupted 9-0 mononylon sutures, with its stromal face toward the ocular surface. After 7 or 30 days, the corneas were removed and PGs were extracted.RESULTS. Normal corneas contained approximately 9 mg of PGs per gram of dry tissue. AMT on intact cornea (G3) did not cause any changes in the concentration of PGs. In contrast, injured corneas contained much less PGs, both on the seventh and on the 30th day posttrauma. The PG concentration was even lower in injured corneas treated by AMT. This decrease was due almost exclusively to dermatan sulfate PGs, and the structure of dermatan sulfate was also modified, indicating changes in the biosynthesis patterns.CONCLUSIONS. Although beneficial effects have been observed on clinical observation and concentration of soluble proteins after AMT, the normal PG composition of cornea was not attained, even 30 days postinjury, indicating that the normal ocular surface reconstruction, if possible, is a long-term process. (Eur J Ophthalmol 2010; 20: 290-9)
Resumo:
Purpose. To trace the eye components involved in proteoglycan synthesis and to characterize the sulfated glycosaminoglycans which are associated to these macromolecules.Methods. Sodium [S-35]-sulfate was injected intravitreally and the rabbits were killed at different time intervals after the injection. The glycosaminoglycans of choroid, ciliary body, cornea, iris, lens capsule, retina and sclera were extracted and processed for estimations of their specific activities, and for electrophoresis plus autoradiography with or without previous treatment with specific enzymes. In addition, methacrylate sections of the eyes were analysed by autoradiography.Results. The peak of specific activities of the glycosaminoglycans of all eye components occurred at 2 days after the intravitreal injection of [S-35]-sulfate. The autoradiography of the agarose gels revealed three types of glycosaminoglycans, namely, heparan-, chondroitin- and dermatan sulfate, only in the retina. The other eye components contained heparan sulfate and either chondroitin or dermatan sulfate. Tissue autoradiography together with the biochemical techniques contributed to unravel the origin of the glycosaminoglycans in the eye components.Conclusions. The results of the present investigation have shown that heparan sulfate, contrasting to chondroitin sulfate and dermatan sulfate, is synthesized in all eye components studied and that the glycosaminoglycan composition differs according to the tissue of origin.
Resumo:
BACKGROUND: Vascular cells express different phenotypes in adult and fetal vessels, and the extracellular matrix they synthesize should reflect these differences. Alterations of vascular proteoglycan/glycosaminoglycan is verified in disorders such as hypertension and diabetes, and when occurring during pregnancy, they bring about structural changes to fetal vessels that often lead to impaired fetus growth. Yet there is little data about the extracellular matrix of an important human fetal vessel, the umbilical artery.EXPERIMENTAL DESIGN: This study involved the biochemical characterization of the extracellular matrix of normal umbilical arteries, umbilical arteries from complicated pregnancies (maternal hypertension and diabetes and intrauterine growth retardation syndrome), and, for purpose of comparison, normal adult arteries (aorta and iliac and pulmonary arteries). Although the collagen types I:III ratio was determined in some cases, emphasis was placed on analysis of glycosaminoglycans.RESULTS: Normal umbilical arteries differ from normal adult arteries in that they contain greater concentrations of hyaluronic acid and lesser concentrations of heparan sulfate and chondroitin 4-and 6-sulfate. The umbilical artery also differs from adult arteries in the disaccharide composition of its chondroitin and heparan sulfates and in the molecular weight of this latter glycosaminoglycan. The glycosaminoglycan distribution in umbilical arteries derived from complicated pregnancies is roughly similar to that of controls. However, total glycosaminoglycan and collagen were significantly reduced, and the collagen I:III ratio was increased in the umbilical arteries from hypertension-complicated pregnancies.CONCLUSIONS: the glycosaminoglycan composition of the normal umbilical artery, a fully differentiated tissue, differs in many aspects from that of normal adult arteries. of the cases of complicated pregnancies studied, the extracellular matrix of umbilical arteries was altered only in maternal hypertension. The changes, notably a mild fibrosis, were not very pronounced and should not impair hemodynamic properties of the vessel.
Resumo:
Pericardial tissue has been used to construct bioprostheses employed in the repair of different kinds of injuries, mostly cardiac. However, calcification and mechanical failure have been the main causes of the limited durability of cardiac bioprostheses constructed with bovine pericardium. In the course of this work, a study was conducted on porcine fibrous pericardium, its microscopic structure and biochemical nature. The general morphology and architecture of collagen were studied under conventional light and polarized light microscopy. The biochemical study of the pericardial matrix was conducted according to the following procedures: swelling test, hydroxyproline and collagen dosage, quantification of amino acids in soluble collagen, component extraction of the extracellular matrix of the right and left ventral regions of pericardium with different molarities of guanidine chloride, protein and glycosaminoglycan (GAG) dosage, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and total GAG analysis. Microscopic analysis showed collagen fibers arranged in multidirectionally oriented layers forming a closely knit web, with a larger number of fibers obliquely oriented, initiating at the lower central region toward the upper left lateral relative to the heart. No qualitative differences were found between proteins extracted from the right and left regions. Likewise, no differences were found between fresh and frozen material. Protein dosages from left frontal and right frontal pericardium regions showed no significant differences. The quantities of extracted GAGs were too small for detection by the method used. Enzymatic digestion and electrophoretic analysis showed that the GAG found is possibly dermatan sulfate. The proteoglycan showed a running standard very similar to the small proteoglycan decorin.
Resumo:
Several methods have been employed to quantify urinary glycosaminoglycans (GAGs), such as chromatography associated with electrophoresis and colorimetric methods, cheaper and faster ones, which employ mainly azure A and B, alcian blue, and dimethylmethylene blue (DMB). The purpose of this study was to standardize a reproducible and cheap method to measure total urinary GAGs in feline urine. Two colorimetric methods based on DMB were tested with chondroitin sulfate C as standard. Urine samples were obtained from 12 healthy cats and some modifications were made for the chosen method to be adequate. The modified technique using DMB acetate buffer carried out in this study can be used to measure feline urinary GAGs. © 2012 Springer-Verlag London.
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Mucopolysaccharidoses (MPS) are rare genetic diseases caused by the deficiency of one of the lysosomal enzymes involved in the glycosaminoglycan (GAG) breakdown pathway. This metabolic block leads to the accumulation of GAG in various organs and tissues of the affected patients, resulting in a multisystemic clinical picture, sometimes including cognitive impairment. Until the beginning of the XXI century, treatment was mainly supportive. Bone marrow transplantation improved the natural course of the disease in some types of MPS, but the morbidity and mortality restricted its use to selected cases. The identification of the genes involved, the new molecular biology tools and the availability of animal models made it possible to develop specific enzyme replacement therapies (ERT) for these diseases. At present, a great number of Brazilian medical centers from all regions of the country have experience with ERT for MPS I, II, and VI, acquired not only through patient treatment but also in clinical trials. Taking the three types of MPS together, over 200 patients have been treated with ERT in our country. This document summarizes the experience of the professionals involved, along with the data available in the international literature, bringing together and harmonizing the information available on the management of these severe and progressive diseases, thus disclosing new prospects for Brazilian patients affected by these conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Our objectives were to characterize the urinary excretion of glycosaminoglycans (GAGs) in horse osteoarthritis, and to investigate the effects of chondroitin sulfate (CS) and glucosamine (GlcN) upon the disease. Urinary GAGs were measured in 47 athletic horses, 20 healthy and 27 with osteoarthritis. The effects of CS and GlcN were investigated in mild osteoarthritis. In comparison to normal, urinary GAGs were increased in osteoarthritis, including mild osteoarthritis affecting only one joint. Treatment with CS + GlcN led to a long lasting increase in the urinary CS and keratan sulfate (KS), and significant improvement in flexion test of tarsocrural and metacarpophalangeal joints was observed. In conclusion, urinary CS and KS seems to reflect the turnover rates of cartilage matrix proteoglycans, and the measurement of these compounds could provide objective means of evaluating and monitoring joint diseases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
LigB is an adhesin from pathogenic Leptospira that is able to bind to extracellular matrix and is considered a virulence factor. A shotgun phage display genomic library was constructed and used for panning against Heparan Sulfate Proteoglycan (HSPG). A phage clone encoding part of LigB protein was selected in panning experiments and showed specific binding to heparin. To validate the selected clone, fragments of LigB were produced as recombinant proteins and showed affinity to heparin and to mammalian cells. Heparin was also able to reduce the binding of rLB-Ct to mammalian cells. Our data suggests that the glycosaminoglycan moiety of the HSPG is responsible for its binding and could mediate the attachment of the recombinant protein rLB-Ct. Thus, heparin may act as a receptor for Leptospira to colonize and to invade the host tissue. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Reasons for performing study: Alternative methods to evaluate the joint condition in asymptomatic osteochondrosis dissecans (OCD) and other joint diseases may be useful. Objectives: To investigate possible changes in synovial fluid composition that may lead to joint conditions in asymptomatic OCD, in mature horses. Methods: Animals aged >2 years, of different breeds, with OCD in the intermediate ridge of distal tibia, symptomatic or not, were studied. Synovial fluid samples (10 healthy; 11 asymptomatic OCD; 25 symptomatic OCD) were collected by arthroscopy from 29 horses. Glycosaminoglycans (GAGs) were analysed by a combination of agarose gel electrophoresis and enzymatic degradation with specific GAG lyases. The viscosity, white blood cell (WBC) count, protein concentration and hyaluronic acid (HA) molecular weight were also determined. Results: The method used here to analyse synovial fluid GAGs is reliable, reproducible and specific. The main synovial fluid GAGs are HA and chondroitin sulphate (CS), 93% and 7% respectively in normal horses. In symptomatic OCD, the concentrations of both increased (expressed as GAG/urea ratios), but CS increased more. The CS increased also in asymptomatic OCD. An inflammatory reaction was suggested by the increased WBC counts in OCD. The molecular weight of the synovial fluid HA was reduced in OCD, explaining the lower viscosity observed. Conclusions: The increased CS in synovial fluid of OCD joints in mature horses suggests that the synovial fluid CS and the WBC count are good markers of the joint conditions, allowing the identification of pathological phase in joint diseases. Potential relevance: The analysis of synovial fluid GAGs shows that cartilage damage occurs even in asymptomatic OCD, implying that arthroscopic removal of osteochondral fragments should be performed even in asymptomatic OCD.
Resumo:
Summary Antibody-based cancer therapies have been successfully introduced into the clinic and have emerged as the most promising therapeutics in oncology. The limiting factor regarding the development of therapeutical antibody vaccines is the identification of tumor-associated antigens. PLAC1, the placenta-specific protein 1, was categorized for the first time by the group of Prof. Sahin as such a tumor-specific antigen. Within this work PLAC1 was characterized using a variety of biochemical methods. The protein expression profile, the cellular localization, the conformational state and especially the interacting partners of PLAC1 and its functionality in cancer were analyzed. Analysis of the protein expression profile of PLAC1 in normal human tissue confirms the published RT-PCR data. Except for placenta no PLAC1 expression was detectable in any other normal human tissue. Beyond, an increased PLAC1 expression was detected in several cancer cell lines derived of trophoblastic, breast and pancreatic lineage emphasizing its properties as tumor-specific antigen. rnThe cellular localization of PLAC1 revealed that PLAC1 contains a functional signal peptide which conducts the propeptide to the endoplasmic reticulum (ER) and results in the secretion of PLAC1 by the secretory pathway. Although PLAC1 did not exhibit a distinct transmembrane domain, no unbound protein was detectable in the cell culture supernatant of overexpressing cells. But by selective isolation of different cellular compartments PLAC1 was clearly enriched within the membrane fraction. Using size exclusion chromatography PLAC1 was characterized as a highly aggregating protein that forms a network of high molecular multimers, consisting of a mixture of non-covalent as well as covalent interactions. Those interactions were formed by PLAC1 with itself and probably other cellular components and proteins. Consequently, PLAC1 localize outside the cell, where it is associated to the membrane forming a stable extracellular coat-like structure.rnThe first mechanistic hint how PLAC1 promote cancer cell proliferation was achieved identifying the fibroblast growth factor FGF7 as a specific interacting partner of PLAC1. Moreover, it was clearly shown that PLAC1 as well as FGF7 bind to heparin, a glycosaminoglycan of the ECM that is also involved in FGF-signaling. The participation of PLAC1 within this pathway was approved after co-localizing PLAC1, FGF7 and the FGF7 specific receptor (FGFR2IIIb) and identifying the formation of a trimeric complex (PLAC1, FGF7 and the specific receptor FGFR2IIIb). Especially this trimeric complex revealed the role of PLAC1. Binding of PLAC1 together with FGF7 leads to the activation of the intracellular tyrosine kinase of the FGFR2IIIb-receptor and mediate the direct phosphorylation of the AKT-kinase. In the absence of PLAC1, no FGF7 mediated phosphorylation of AKT was observed. Consequently the function of PLAC1 was clarified: PLAC1 acts as a co-factor by stimulating proliferation by of the FGF7-FGFR2 signaling pathway.rnAll together, these novel biochemical findings underline that the placenta specific protein PLAC1 could be a new target for cancer immunotherapy, especially considering its potential applicability for antibody therapy in tumor patients.
Resumo:
We investigated whether human articular chondrocytes can be labeled efficiently and for long-term with a green fluorescent protein (GFP) lentivirus and whether the viral transduction would influence cell proliferation and tissue-forming capacity. The method was then applied to track goat articular chondrocytes after autologous implantation in cartilage defects. Expression of GFP in transduced chondrocytes was detected cytofluorimetrically and immunohistochemically. Chondrogenic capacity of chondrocytes was assessed by Safranin-O staining, immunostaining for type II collagen, and glycosaminoglycan content. Human articular chondrocytes were efficiently transduced with GFP lentivirus (73.4 +/- 0.5% at passage 1) and maintained the expression of GFP up to 22 weeks of in vitro culture after transduction. Upon implantation in nude mice, 12 weeks after transduction, the percentage of labeled cells (73.6 +/- 3.3%) was similar to the initial one. Importantly, viral transduction of chondrocytes did not affect the cell proliferation rate, chondrogenic differentiation, or tissue-forming capacity, either in vitro or in vivo. Goat articular chondrocytes were also efficiently transduced with GFP lentivirus (78.3 +/- 3.2%) and maintained the expression of GFP in the reparative tissue after orthotopic implantation. This study demonstrates the feasibility of efficient and relatively long-term labeling of human chondrocytes for co-culture on integration studies, and indicates the potential of this stable labeling technique for tracking animal chondrocytes for in cartilage repair studies.