982 resultados para polymerization reaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this communication we provide the most recent results on RAFT-mediated ring-closing polymerization of diallyldimethylammonium chloride (DADMAC). The polymerization was carried out in aqueous solution employing 2,2′-azobis(2-methylpropionamidine)-dihydrochloride as the free radical initiator and trithiocarbonate RAFT agent (2-{[(dodecylsulfanyl)carbonothioyl sulfanyl]}propanoic acid, DoPAT) as the controlling RAFT agent. The results show that – while the system is not as completely controlled as previously described – it is nevertheless possible to mediate the polymerization of DADMAC and impart some living characteristics onto the system. The initial study on the RAFT-mediated polymerization of DADMAC may have overestimated the degree of livingness within this reaction. However, it is possible – at low conversions – for some living characteristics to be observed, as the evolution of molecular weight with conversion is linear. In addition, polymers with a reasonably narrow polydispersity can be isolated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of a series of nickel dichloride complexes with bulky diphosphinomethane chelate ligands R2PCH2PR′2 is reported. Reaction with the appropriate Grignard reagent leads to the corresponding dimethyl and dibenzyl complexes. Cationic monomethyl and mono-η3-benzyl complexes are generated from these dialkyl complexes by protonation with [H(OEt2)2]+[B(3,5-(CF3)2C6H3)4]−, while the complex [(dtbpm κ2P)Ni(η3-CH(CH2Ph)Ph]+[B(3,5-(CF3)2C6H3)4]−is obtained from protonation of the Ni(0) olefin complex (dtbpm-κ2P)N(η2-trans-stilbene). Crystal structures of examples of dichlorides, dimethyl, dibenzyl, cationic methyl, and cationic η3-benzyl complexes are reported. Solutions of the cations polymerize ethylene under mild conditions and without the necessity of an activating agent, to form polyethylene having high molecular weights and low degrees of chain branching. In comparison to the Ni methyl cations, the η3-benzyl cation complexes are more stable and somewhat less active but still very efficient in C2H4 polymerization. The effect on the resulting polyethylene of varying the substituents R, R′ on the phosphine ligand has been examined, and a clear trend for longer chain PE with less branching in the presence of more bulky substituents on the diphosphine has been found. Density functional calculations have been used to examine the rapid suprafacial η3 to η3 haptotropic shift processes of the[(R2PCH2PR′2)Ni] fragment and the η3−η1 change of the coordination mode of the benzyl group required for polymerization in those cations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present article gives an overview of the reversible addition fragmentation chain transfer (RAFT) process. RAFT is one of the most versatile living radical polymerization systems and yields polymers of predictable chain length and narrow molecular weight distribution. RAFT relies on the rapid exchange of thiocarbonyl thio groups between growing polymeric chains. The key strengths of the RAFT process for polymer design are its high tolerance of monomer functionality and reaction conditions, the wide range of well-controlled polymeric architectures achievable, and its (in-principle) non-rate-retarding nature. This article introduces the mechanism of polymerization, the range of polymer molecular weights achievable, the range of monomers in which polymerization is controlled by RAFT, the various polymeric architectures that can be obtained, the type of end-group functionalities available to RAFT-made polymers, and the process of RAFT polymerization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyethene, polyacrylates and polymethyl acrylates are versatile materials that find wide variety of applications in several areas. Therefore, polymerization of ethene, acrylates and methacrylates has achieved a lot attention during past years. Numbers of metal catalysts have been introduced in order to control the polymerization and to produce tailored polymer structures. Herein an overview on the possible polymerization pathways for ethene, acrylates and methacrylates is presented. In this thesis iron(II) and cobalt(II) complexes bearing tri- and tetradentate nitrogen ligands were synthesized and studied in the polymerization of tertbutyl acrylate (tBA) and methyl methacrylate (MMA). Complexes are activated with methylaluminoxane (MAO) before they form active combinations for polymerization reactions. The effect of reaction conditions, i.e. monomer concentration, reaction time, temperature, MAO to metal ratio, on activity and polymer properties were investigated. The described polymerization system enables mild reaction conditions, the possibility to tailor molar mass of the produced polymers and provides good control over the polymerization. Moreover, the polymerization of MMA in the presence of iron(II) complex with tetradentate nitrogen ligands under conditions of atom transfer radical polymerization (ATRP) was studied. Several manganese(II) complexes were studied in the ethene polymerization with combinatorial methods and new active catalysts were found. These complexes were also studied in acrylate and methacrylate polymerizations after MAO activation and converted into the corresponding alkyl (methyl or benzyl) derivatives. Combinatorial methods were introduced to discover aluminum alkyl complexes for the polymerization of acrylates and methacrylates. Various combinations of aluminum alkyls and ligands, including phosphines, salicylaldimines and nitrogen donor ligands, were prepared in situ and utilized to initiate the polymerization of tBA. Phosphine ligands were found to be the most active and the polymerization MMA was studied with these active combinations. In addition, a plausible polymerization mechanism for MMA based on ESI-MS, 1H and 13C NMR is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degree of branching (DB) describes the level of structural perfection of a hyperbranched polymer when compared to its defect-free analogue, namely the dendrimer. The strategy most commonly used to achieve high DB values, specifically while using AB(2) type self-condensations, is to design an AB2 monomer wherein the reaction of the first B-group leads to an enhancement of the reactivity of the second one. In the present study, we show that an AB2 monomer carrying a dimethylacetal unit and a thiol group undergoes a rapid self-condensation in the melt under acid-catalysis to yield a hyperbranched polydithioacetal with no linear defects. NMR studies using model systems reveal that the intermediate monothioacetal is relatively unstable under the polymerization conditions and transforms rapidly to the dithioacetal; because this second step occurs irreversibly during polymer formation, it leads to a defect-free hyperbranched polydithioacetal. TGA studies of the polymerization process provided some valuable insights into the kinetics of polymerization. An additional virtue of this approach is that the numerous terminal dimethylacetal groups are very labile and can be quantitatively transformed by treatment with a variety of functional thiols; the terminal dimethylacetals were, thus, reacted with various thiols, such as dodecanethiol, benzyl mercaptan, ethylmercaptopropionate, and so on, to demonstrate the versatility of these systems as sulfur-rich hyperscaffolds to anchor different kinds of functionality on their periphery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two major topics are covered: the first chapter is focused on the development of post-metallocene complexes for propylene polymerization. The second and third chapters investigate the consequences of diisobutylaluminum hydride (HAliBu2) additives in zirconocene based polymerization systems.

The synthesis, structure, and solution behavior of early metal complexes with a new tridentate LX2 type ligand, bis(thiophenolate)pyridine ((SNS) = (2-C6H4S)2-2,6-C5H3N) are investigated. SNS complexes of Ti, Zr, and Ta having dialkylamido coligands were synthesized and structurally characterized. The zirconium complex, (SNS)Zr(NMe2)2, displays C2 symmetry in the solid state. Solid-state structures of tantalum complexes (SNS)Ta(NMe2)3 and (SNS)TaCl(NEt2)2 also display pronounced C2 twisting of the SNS ligand. 1D and 2D NMR experiments show that (SNS)Ta(NMe2)3 is fluxional with rotation about the Ta N(amide) bonds occurring on the NMR timescale. The fluxional behavior of (SNS)TaCl(NEt2)2 in solution was also studied by variable temperature 1H NMR. Observation of separate signals for the diastereotopic protons of the methylene unit of the diethylamide indicates that the complex remains locked on the NMR timescale in one diastereomeric conformation at temperatures below -50 °C.

Reduction of Zr(IV) metallocenium cations with sodium amalgam (NaHg) produces EPR signals assignable to Zr(III) metallocene complexes. Thus, chloro-bridged heterobinuclear ansa-zirconocenium cation [((SBI))Zr(μ-Cl)2AlMe2]+B(C6F5) (SBI = rac-dimethylsilylbis(1-indenyl)), gives rise to an EPR signal assignable to the complex (SBI)ZrIII(μ-Cl)2AlMe2, while (SBI)ZrIII-Me and (SBI)ZrIII(-H)2AliBu2 are formed by reduction of [(SBI)Zr(μ-Me)2AlMe2]+B(C6F5) and [(SBI)Zr(μ-H)3(AliBu2)2]+B(C6F5)4¯, respectively. These products are also formed, along with (SBI)ZrIII-iBu and [(SBI)ZrIII]+ AlR4¯ when (SBI)ZrMe2 reacts with HAliBu2, eliminating isobutane en route to the Zr(III) complex. Studies concerning the interconversion reactions between these and other (SBI)Zr(III) complexes and reaction mechanisms involved in their formation are also reported.

The addition of HAliBu2 to precatalyst [(SBI)Zr(µ-H)3(AliBu2)2]+ significantly slows the polymerization of propylene and changes the kinetics of polymerization from 1st to 2nd order with respect to propylene. This is likely due to competitive inhibition by HAliBu2. When the same reaction is investigated using [(nBuCp)2Zr(μ-H)3(AliBu2)2]+, hydroalumination between propylene and HAliBu2 is observed instead of propylene polymerization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using density functional theory, we studied the fundamental steps of olefin polymerization for zwitterionic and cationic Group IV ansa-zirconocenes and a neutral ansa- yttrocene. Complexes [H2E(C5H4)2ZrMe]n (n = 0: E = BH2 (1), BF2 (2), AlH2(3); n = +: E = CH2(4), SiH2(5)) and H2Si(C5H4)2YMe were used as computational models. The largest differences among these three classes of compounds were the strength of olefin binding and the stability of the β-agostic alkyl intermediate towards β-hydrogen elimination. We investigated the effect of solvent on the reaction energetics for land 5. We found that in benzene the energetics became very similar except that a higher olefin insertion barrier was calculated for 1. The calculated anion affinity of [CH3BF3]- was weaker towards 1 than 5. The calculated olefin binding depended primarily on the charge of the ansa linker, and the olefin insertion barrier was found to decrease steadily in the following order: [H2C(C5H4)2ZrMe]+ > [F2B(C5H4)2ZrMe] ≈ [H2B(C5H4)2ZrMe] > [H2Si(C5H4)2ZrMe]+ > [H2Al(C5H4)2ZrMe].

We prepared ansa-zirconocene dicarbonyl complexes Me2ECp2Zr(CO)2 (E = Si, C), and t-butyl substituted complexes (t-BuCp)2Zr(CO)2, Me2E(t-BuCp)2Zr(CO)2 (E = Si, C), (Me2Si)2(t-BuCp)2Zr(CO)2 as well as analogous zirconocene complexes. Both the reduction potentials and carbonyl stretching frequencies follow the same order: Me2SiCp2ZrCl2> Me2CCp2ZrCl2> Cp2ZrCl2> (Me2Si)2Cp2ZrCl2. This ordering is a result of both the donating abilities of the cyclopentadienyl substituents and the orientation of the cyclopentadiene rings. Additionally, we prepared a series of analogous cationic zirconocene complexes [LZrOCMe3][MeB(C6F5)3] (L = CP2, Me2SiCp2, Me2CCP2, (Me2Si)2Cp2) and studied the kinetics of anion dissociation. We found that the enthalpy of anion dissociation increased from 10.3 kcal•mol-1 to 17.6 kcal•mol-1 as exposure of the zirconium center increased.

We also prepared series of zirconocene complexes bearing 2,2-dimethyl-2-sila-4-pentenyl substituents (and methyl-substituted olefin variants). Methide abstraction with B(C6F5) results in reversible coordination of the tethered olefin to the cationic zirconium center. The kinetics of olefin dissociation have been examined using NMR methods, and the effects of ligand variation for unlinked, singly [SiMe2]-linked and doubly [SiMe2]-linked bis(cyclopentadienyl) arrangements has been compared (ΔG‡ for olefin dissociation varies from 12.8 to 15.6 kcal•mol-1). Methide abstraction from 1,2-(SiMe2)25-C5H3)2Zr(CH3)-(CH2CMe2CH2CH = CH2) results in rapid β-allyl elimination with loss of isobutene yielding the allyl cation [{1,2-(SiMe2)25-C5H3)2Zr(η3-CH2CH=CH2)]+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of Cs- and C1-symmetric doubly-linked ansa-metallocenes of the general formula {1,1'-SiMe2-2,2'-E-('ƞ5-C5H2-4-R1)-(ƞ5-C5H-3',5'-(CHMe2)2)}ZrC2 (E = SiMe2 (1), SiPh2 (2), SiMe2 -SiMe2 (3); R1 = H, CHMe2, C5H9, C6H11, C6H5) has been prepared. When activated by methylaluminoxane, these are active propylene polymerization catalysts. 1 and 2 produce syndiotactic polypropylenes, and 3 produces isotactic polypropylenes. Site epimerization is the major pathway for stereoerror formation for 1 and 2. In addition, the polymer chain has slightly stronger steric interaction with the diphenylsilylene linker than with the dimethylsilylene linker. This results in more frequent site epimerization and reduced syndiospecificity for 2 compared to 1.

C1-Symmetric ansa-zirconocenes [1,1 '-SiMe2-(C5H4)-(3-R-C5H3)]ZrCl2 (4), [1,1 '-SiMe2-(C5H4)-(2,4-R2-C5H2)]ZrCl2 (5) and [1,1 '-SiMe2-2,2 '-(SiMe2-SiMe2)-(C5H3)-( 4-R-C5H2)]ZrCl2 (6) have been prepared to probe the origin of isospecificity in 3. While 4 and 3 produce polymers with similar isospecificity, 5 and 6 give mostly hemi-isotactic-like polymers. It is proposed that the facile site epimerization via an associative pathway allows rapid equilibration of the polymer chain between the isospecific and aspecific insertion sites. This results in more frequent insertion from the isospecific site, which has a lower kinetic barrier for chain propagation. On the other hand, site epimerization for 5 and 6 is slow. This leads to mostly alternating insertion from the isospecific and aspecific sites, and consequently, a hemi-isotactic-like polymers. In comparison, site epimerization is even slower for 3, but enchainment from the aspecific site has an extremely high kinetic barrier for monomer coordination. Therefore, enchainment occurs preferentially from the isospecific site to produce isotactic polymers.

A series of cationic complexes [(ArN=CR-CR=NAr)PtMe(L)]+[BF4]+ (Ar = aryl; R = H, CH3; L = water, trifluoroethanol) has been prepared. They react smoothly with benzene at approximately room temperature in trifluoroethanol solvent to yield methane and the corresponding phenyl Pt(II) cations, via Pt(IV)-methyl-phenyl-hydride intermediates. The reaction products of methyl-substituted benzenes suggest an inherent reactivity preference for aromatic over benzylic C-H bond activation, which can however be overridden by steric effects. For the reaction of benzene with cationic Pt(II) complexes, in which the diimine ligands bear 3,5-disubstituted aryl groups at the nitrogen atoms, the rate-determining step is C-H bond activation. For the more sterically crowded analogs with 2,6-dimethyl-substituted aryl groups, benzene coordination becomes rate-determining. The more electron-rich the ligand, as reflected by the CO stretching frequency in the IR spectrum of the corresponding cationic carbonyl complex, the faster the rate of C-H bond activation. This finding, however, does not reflect the actual C-H bond activation process, but rather reflects only the relative ease of solvent molecules displacing water molecules to initiate the reaction. That is, the change in rates is mostly due to a ground state effect. Several lines of evidence suggest that associative substitution pathways operate to get the hydrocarbon substrate into, and out of, the coordination sphere; i.e., that benzene substitution proceeds by a solvent- (TFE-) assisted associative pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence for the stereochemical isomerization of a variety of ansa metallocene compounds is presented. For the scandocene allyl derivatives described here, we have established that the process is promoted by a variety of salts in both ether and hydrocarbon solvents and is not accelerated by light. A plausible mechanism based on an earlier proposal by Marks, et al., is offered as an explanation of this process. It involves coordination of anions and/or donor solvents to the metal center with cation assistance to encourage metalcyclopentadienyl bond heterolysis, rotation about the Si-Cp bond of the detached cyclopentadienide and recoordination of the opposite face. Our observations in some cases of thermodynamic racemic:meso ratios under the reaction conditions commonly used for the synthesis of the metallocene chlorides suggests that the interchange is faster than metallation, such that the composition of the reaction mixture is determined by thermodynamic, not kinetic, control in these cases.

Two new ansa-scandocene alkenyl compounds react with olefins resulting in the formation of η3-allyl complexes. Kinetics and labeling experiments indicate a tuck-in intermediate on the reaction pathway; in this intermediate the metal is bound to the carbon adjacent to the silyllinker in the rear of the metallocene wedge. In contrast, reaction of permethylscandocene alkenyl compounds with olefins results, almost exclusively, in vinylic C-H bond activation. It is proposed that relieving transition state steric interactions between the cyclopentadienyl rings and the olefin by either linking the rings together or using a larger lanthanide metal may allow for olefin coordination, stabilizing the transition state for allylic σ-bond metathesis.

A selectively isotopically labeled propylene, CH2CD(13CH3), was synthesized and its polymerization was carried out at low concentration in toluene solution using isospecific metallocene catalysts. Analysis of the NMR spectra (13C, 1H, and 2H) of the resultant polymers revealed that the production of stereoerrors through chain epimerization proceeds exclusively by the tertiaryalkyl mechanism. Additionally, enantiofacial inversion of the terminally unsaturated polymer chain occurs by a non-dissociative process. The implications of these results on the mechanism of olefin polymerization with these catalysts is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isotope effect on propagation rate was determined for four homogeneous ethylene polymerization systems. The catalytic system Cp_2Ti(Et)Cl + EtA1Cl_2 has a k^H_p/k^D_p = 1.035 ± 0.03. This result strongly supports an insertion mechanism which does not involve a hydrogen migration during the rate determining step of propagation (Cossee mechanism). Three metal-alkyl free systems were also studied. The catalyst I_2 (PMe_3)_3Ta(neopentylidene)(H) has a k^H_p/k^D_p = 1.709. It is interpreted as a primary isotope effect involving a non-linear a-hydrogen migration during the rate determining step of propagation (Green mechanism). The lanthanide complexes Cp*_2LuMe•Et_2O and Cp*_2YbMe•Et_2O have a k^H_p/k^D_p = 1.46 and 1.25, respectively. They are interpreted as primary isotope effects due to a partial hydrogen migration during the rate determining step of propagation.

The presence of a precoordination or other intermediate species during the polymerization of ethylene by the mentioned metal-alkyl free catalysts was sought by low temperature NMR spectroscopy. However, no evidence for such species was found. If they exist, their concentrations are very small or their lifetimes are shorter than the NMR time scale.

Two titanocene (alkenyl)chlorides (hexenyl 1 and heptenyl 2 were prepared from titanocene dichloride and a THF solution of the corresponding alkenylmagnesium chloride. They do not cyclize in solution when alone, but cyclization to their respective titanocene(methyl(cycloalkyl) chlorides occurs readily in the presence of a Lewis acid. It is demonstrated that such cyclization occurs with the alkenyl ligand within the coordination sphere of the titanium atom. Cyclization of 1 with EtAlCl_2 at 0°C occurs in less than 95 msec (ethylene insertion time), as shown by the presence of 97% cyclopentyl-capped oligomers when polymerizing ethylene with this system. Some alkyl exchange occurs (3%). Cyclization of 2 is slower under the same reaction conditions and is not complete in 95 msec as shown by the presence of both cyclohexyl-capped oligomers (35%) and odd number α-olefin oligomers (50%). Alkyl exchange is more extensive as evidenced by the even number n-alkanes (15%).

Cyclization of 2-d_1 (titanocene(hept-6-en-1-yl-1-d_1)chloride) with EtA1Cl_2 demonstrated that for this system there is no α-hydrogen participation during said process. The cyclization is believed to occur by a Cossee-type mechanism. There was no evidence for precoordination of the alkenyl double bond during the cyclization process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fluorescence immunoassay for human IgG (Ag) was developed using a pH-sensitive polymer prepared by thermal initiation or redox initiation polymerization as a carrier. In the competitive immunoassay, appropriate quantity of Ag was immobilized on the polymer and the standard Ag (or sample) solution, and a constant amount of fluorescein isothiocyanate labeled goat anti-human IgG antibody (Ab-FITC) was added. Immobilized Ag and the standard (or sample) Ag competed for binding to the Ab-FITC in 37 C in homogeneous format. After changing the pH to separate the polymer-immune complex precipitate, it was re-dissolved and determined by fluorescence method. The results showed that the immobilization efficiency, immunological reaction activities of immobilized Au and phase transition pH range were improved as Ag was immobilized by thermal initiation instead of redox initiation polymerization. Under optimum conditions, the calibration graphs for the Ag in both methods, thermal initiation and redox initiation, were linear over the concentration range of 0.0-1000 ng mL(-1), with detection limits 8 (thermal initiation) and 12 ng mL(1) (redox initiation), respectively. Moreover, some pH-sensitive polymer prepared only in organic solvent or under high temperature could also be used as an immunoreaction carrier by thermal initiation polymerization. Thermal initiation polymerization was a better immobilization mode. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of new rare-earth metal bis(alkyl) complexes [L(1-3)Ln(CH2SiMe3)(2)(THF)(n)] (L-1 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H2Me3-2,4,6: Ln = Sc, n = 1 (1a); Ln = Lu, n = 1 (1b); L-2 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H3Et2-2,6: Ln = Sc, n = 1 (2a); Ln = Lu, n = 1 (2b); Ln = Y, n = 1 (2c); L-3 = MeC4H2SCH2NC6H4(Ph)(2)P=(NC6H3Pr2)-Pr-i-2,6: Ln = Sc, n = 0 (3a)) and (LSc)-Sc-4(CH2SiMe3)(2()THF) (4a) (L-4 = C6H5CH2NC6H4(Ph)(2)P=NC6H3Et2-2,6) have been prepared by reaction of rare-earth metal tris(alkyl)s with the corresponding HL1-4 ligands via alkane elimination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of 7-{(N-2,6-R)iminomethyl)}lindole (HL1, R = dimethylphenyl; HL2, R = diisopropylphenyl) and rare-earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), generated new rare-earth metal bis(alkyl) complexes LLn(CH2SiMe3)(2)(THF) [L = L-1: Ln = Lu. (1a), Sc (1b); L = L-2 : Ln = Lu (3a), Se (3b)] and mono(alkyl) complexes L-2 Lu-2(CH2SiMe3) (4a). Treatment of alkyl complexes 1a and 4a with N,N'-diisopropylcarbodiimide afforded the corresponding amidinates (LLu)-Lu-1{iPr(2)NC(CH2SiMe3) NiPr2}(2) (2a) and L-2 Lu-2{iPr(2)NC(CH2SiMe3)NiPr2} (5a), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Newrareearth metal bis(alkyl) complexes [(NPNPh)Ln(CH2SiMe3)(2)(THF) (NPNPh:N(Ph)PPh2=NC6H2Me3-2,4,6; Ln = Sc (3a), Ln = Y (3b), Ln = Lu (3c)) and [(NPNPy)Sc(CH2SiMe3)(2)(THF)1 (NPNPY = N(Py)PPh2=NC6H2Me3-2,4,6) (3d)) have been prepared via protonolysis reaction between rare earth metal tris(alkyl)s and the corresponding iminophosphonamines. Complexes 3a-d are analogous monomers of THF solvate. Each metal ion coordinates to a eta(2)-chelated NPN ligand and two cis-located alkyl groups, adopting tetrahedron geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enolic Schiff base zinc (II) complex 1 was synthesized. XRD revealed 1 was a novel crown-like macrocycle structure consisted of hexanuclear units of (LZnEt)(6) via the coordination chelation between the Zn atom and adjacent amine nitrogen atom. Further reaction of 1 with one equivalent 2-propanol at RT produced Zn-alkoxide 2 by in situ alcoholysis. Complex 2 was used as an initiator to polymerize rac-lactide in a controlled manner to give heterotactic enriched polylactide. Factors that influenced the polymerization such as the polymerization time and the temperature as well as the monomer concentration were discussed in detail in this paper.