939 resultados para poly vinyl acetate
Resumo:
Flexible, nano-composite moisture barrier films of poly(vinyl alcohol-co-ethylene) with surface modified montmorillonite fabricated by solution casting were used to encapsulate organic devices. The composite films were characterized by FTIR, UV-visible spectroscopy and SEM imaging. Thermal and mechanical properties of the composite films were studied by DSC and UTM. Calcium degradation test was used to determine the transmission rate of water vapour through the composite films, which showed a gradual reduction from similar to 0.1 g m(-2) day(-1) to 0.0001 g m(-2) day(-1) with increasing modified montmorillonite loading in the neat copolymer. The increase in moisture barrier performance is attributed to the decreased water vapour diffusivity due to matrix-filler interactions in the composite. The accelerated aging test was carried out for non-encapsulated and encapsulated devices to evaluate the efficiency of the encapsulants. The encapsulated devices exhibited longer lifetimes indicating the efficacy of the encapsulant.
Resumo:
The effect of silver nanoparticles (nAg) in PS/PVME polystyrene/poly(vinyl methyl ether)] blends was studied with respect to the evolution of morphology, demixing temperature, and segmental dynamics. In the early stage of demixing, PVME developed an interconnected network that coarsened in the late stage. The nAg induced miscibility in the blends as supported by shear rheological measurements. The physicochemical processes that drive phase separation in blends also led to migration of nAg to the PVME phase as supported by AFM. The segmental dynamics was greatly influenced by the presence of nAg due to the specific interaction of nAg with PVME. Slower dynamics and an increase in intermolecular cooperativity in the presence of nAg further supported the role of nAg in delaying the phase separation processes and augmenting the demixing temperature in the blends. Different theoretical models were assessed to gain insight into the dynamic heterogeneity in PS/PVME blends at different length scales.
Resumo:
Graphene oxide and reduced graphene oxide (r-GO) were synthesized by wet chemistry and the effect of r-GO in PS-PVME blends was investigated here with respect to phase miscibility, intermolecular cooperativity in the glass transition region and concentration fluctuation variance by shear rheology and dielectric spectroscopy. The spinodal decomposition temperature (T-s) and correlation length were evaluated from isochronal temperature scans in shear rheology. The r-GO is shown to induce miscibility in the blends, which may lead to increased local heterogeneity in the blends, though the length of cooperatively re-arranged regions (xi) at T-g is more or less unaltered. The evolution of the phase morphology as a function of temperature was assessed using polarized optical microscopy (POM). In the case of the 60/40 PS-PVME blends with 0.25 wt% r-GO, apart from significant refinement in the morphology, retention of the interconnected ligaments of PVME was observed, even in the late stages of phase separation suggesting that the coarsening of the phase morphology has been slowed down in the presence of r-GO. This phenomenon was also supported by AFM. Surface enrichment of PVME, owing to its lower surface tension, in the demixed samples was supported by XPS scans. The interconnected network of PVME has resulted in significantly higher permittivity in the bi-phasic blends, although the concentration of r-GO is below the percolation threshold.
Resumo:
Functionalized cenosphere in PVB composite films were fabricated by melt processing. The composites show higher tensile strength with lower failure strain with increased filler ratio in the matrix. Fractographic images of the samples and DMA studies indicate brittle failure of the matrix. Moisture permeation and water contact angle studies reveal improved hydrophobicity of the matrix, while the factor of surface roughness increases the wettability at higher filler content. Schottky-structured devices encapsulated with functionalized cenosphere indicate enhanced resistance to moisture and increased life time for the devices.
Resumo:
In this work, a hybrid-polymer nanocomposite film, based on polyvinyl butyral/amino-silane functionalized nano alumina, was fabricated by melt processing. The calcium degradation measurements suggest the functionalized nanocomposite films exhibit higher resistance towards moisture penetration as compared to the neat alumina loaded films. Thermal stability, mechanical strength, and contact angle studies of the composites were also conducted to evaluate the performance of the functionalized alumina loaded films. These nanocomposite films were encapsulated over Al/P3HT/ITO Schottky structured device. The changes observed in the current density of the devices to the applied voltage before and after accelerated aging conditions are presented. The nanocomposite with functionalized alumina films exhibits 50% change in current density, which is superior to that attained with neat and non-functionalized films. POLYM. COMPOS., 35:1426-1435, 2014. (c) 2013 Society of Plastics Engineers
Resumo:
In the current study, amino silane functionalized cenosphere particles was used as a reinforcing filler in poly(vinyl butyral) matrix and were made by melt blending. The changes observed in the dielectric performance of the composite films with varying weight percentage of cenosphere particle in the matrix were investigated. The dielectric property and impedance spectroscopy were evaluated as a function of applied frequency in the range of 50 Hz to 5 MHz. It is observed that, because of orientation polarization of the PVB polymer, the permittivity and impedance decrease, whereas conductivity increases. Tangent loss graph indicates that the property of the matrix is associated with geometrical fill factor and the lowest quality factor. Therefore, above 10 kHz, these composites can be considered as dielectric loss-less material. (C) 2013 Society of Plastics Engineers
Resumo:
Poly(vinyl butyral) - MMT clay nanocomposites were synthesized in situ with three different degrees of acetalization and with varying clay content for each vinyl butyral polymer ratio. The clay nano-platelet galleries were expanded, as determined by X-ray diffraction and TEM analysis. The glass transition temperature of the polymer nanocomposites were found to be similar to 56 degrees C and similar to 52 degrees C for the neat polymer and the 4% clay loaded samples, respectively. The 4 wt% clay loaded film showed higher strength and low strain to failure. The dynamic mechanical analysis also confirmed the improved stability of the matrix. The matrix with 0.5 butyral to alcohol ratio for 4 wt% clay exhibited good water vapor transmission compared to all other compositions. The encapsulated devices with 2.5 and 4 wt% clay loaded films increases the device life time and the efficiencies of these films were 50% higher than their encapsulated pristine polymer films. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
175 p. : il.
Resumo:
The miscibility and phase behavior of poly(4-vinylphenol) (PVPh) with poly(vinyl methyl ketone) (PVMK) was investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). It was shown that all blends of PVPh/PVMK are totally miscible. A DSC study showed the apparition of a single glass transition (T-g) over their entire composition range. When the amount of PVPh exceeds 50% in blends, the obtained T(g)s are found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are capable of forming interpolymer complexes. FTIR analysis revealed the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and carbonyl groups, which intensified when the amount of PVPh was increased in blends. Furthermore, the quantitative FTIR study carried out for PVPh/PVMK blends was also performed for the vinylphenol (VPh) and vinyl methyl ketone (VMK) functional groups. These results were also established by scanning electron microscopy study (SEM).
Resumo:
A poly(vinyl chloride)(PVC)-based membrane of 15-crown-5 exhibits a good response for lead(II) ions over a wide concentration range. The response time of the sensor is 30 s and the membrane can be used for more than four months without observing any divergence. The selectivity of the sensor is comparable with those reported for other such electrodes. It was possible to determine lead in polluted waters using this electrode assembly.
Resumo:
A series of full interpenetrating polymer network (full-IPN) films of poly(acrylic acid) (PAA)/poly (vinyl alcohol) (PVA) were prepared by radical solution polymerization and sequential IPN technology. Attenuated total reflectance-Fourier transform infrared spectroscopy, swelling properties, mechanical properties, morphology, and glass transition temperature of the films were investigated. FTIR spectra analysis showed that new interaction hydrogen bonds between PVA and PAA were formed. Swelling property of the films in distilled water and different pH buffer solution was studied. Swelling ratio increased with increasing PAA content of IPN films in all media, and swelling ratio decreased with increasing PVA crosslink degree. Tensile strength and elongation at break related not only to the constitution of IPNs but also to the swelling ratio of IPNs.
Resumo:
The morphological development and crystallization behavior of poly(epsilon-caprolactone) (PCL) in miscible mixtures of PCL and poly(vinyl methyl ether) (PVME) were investigated by optical microscopy as a function of the mixture composition and crystallization temperature. The results indicated that the degree of crystallinity of PCL was independent of the mixture composition upon melt crystallization because the glass-transition temperatures of the mixtures were much lower than the crystallization temperature of PCL. The radii of the PCL spherulites increased linearly with time at crystallization temperatures ranging from 42 to 49 degrees C. The isothermal growth rates of PCL spherulites decreased with the amount of the amorphous PVME components in the mixtures. Accounting for the miscibility of PCL/PVME mixtures, the radial growth rates of PCL spherulites were well described by a kinetic equation involving the Flory-Huggins interaction parameter and the free energy for the nuclei formation in such a way that the theoretical calculations were in good agreement with the experimental data. From the analysis of the equilibrium melting point depression, the interaction energy density of the PVME/PCL system was calculated to be -3.95 J/cm(3).
Resumo:
The crystallization behaviors of poly( E-caprolactone) (PCL) in poly(epsilon-caprolactone) (PCL) and poly(vinyl methyl ether) (PVME) blends were investigated by POM, DSC, WAXD, SAXS. POM results indicated that spherical crystal morphology was present during isothermal process, and the spheric growth rates were reduced with increasing the contents of PVME in PCL/PVME blends. It was found that the crystallinity of PCL in the blends remained almost constant regardless of the blend composition, but it was dependent on preparation technique. Solution-crystallization was found to be a technique capable of increasing crystallinity levels for some compositions. The melting behavior of the blends is a rather complex process. Both solution-crystallized samples and isothermal-crystallized samples exhibited a single endotherm. Oppositely, melting-crystallized samples exhibited dual-melting endotherms whose mangnitudes vary with blend compositions. On the basis of WAXD and SAXS experiments, it is found that the crystal structure is unchanged, but the long period increases with increasing the content of PVME because of the thickening of the amorphous layers.
Resumo:
A series of new composite proton exchange membranes for direct methanol fuel cells (DMFCs) based on poly (vinyl alcohol) (PVA), phosphotungstic acid (PWA) and silica were prepared. The highest proton conductivity (a) of these membranes is 0.017 S/cm at ambient temperature. The methanol permeability (D) of these composite membranes ranges from 10(-7) to 10(-8) cm(2)/S. From the ratios of sigma/D, it was found that the optimal weight composition of the PVA/PWA/SiO2 membrane is PVA/PWA/SiO2=0.40:0.40:0.20 wt. Infrared (IR) spectrographic measurements indicate that the Keggin structure characteristics of the PW12O403- anion is present in the composite membranes. Cyclic voltammetry shows that the electrochemical stability window of the complex membrane is from -0.5 to 1.5 V vs. Ag/AgCl electrode. The results of differential scanning calorimetry (DSC) show that silica can improve the thermal stability of the complexes and the single Tg of the membrane indicates that the membrane is homogeneous. The complexes behave as X-ray amorphous.