970 resultados para polarimetric SAR
Resumo:
We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2, and GRS 1915+105. The slopes of the spectra are shallower than what is expected from a standard steady state accretion disk, and can be explained if the near-infrared flux contains a contribution from an optically thin jet. For the neutron star systems, Sco X-1 and Cyg X-2, the polarization levels at 2.4 mu m are 1.3% +/- 0.10% and 5.4% +/- 0.7%, respectively, which is greater than the polarization level at 1.65 mu m. This cannot be explained by interstellar polarization or electron scattering in the anisotropic environment of the accretion flow. We propose that the most likely explanation is that this is the polarimetric signature of synchrotron emission arising from close to the base of the jets in these systems. In the black hole system GRS 1915+105 the observed polarization, although high (5.0% +/- 1.2% at 2.4 mu m), may be consistent with interstellar polarization. For Sco X-1 the position angle of the radio jet on the sky is approximately perpendicular to the near-infrared position angle (electric vector), suggesting that the magnetic field is aligned with the jet. These observations may be a first step toward probing the ordering, alignment, and variability of the outflow magnetic field in a region closer to the central accreting object than is observed in the radio band.
Resumo:
We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2 and GRS 1915+105. For Sco X-1 and Cyg X-2, the polarization levels at 2.4 µm are 1.3+/-0.10% and 5.4+/-0.7%, respectively, which is greater than the polarization level at 1.65 µm. This cannot be explained by interstellar polarization or electron scattering in the anisotropic environment of the accretion flow. We propose that the most likely explanation is that this is the polarimetric signature of synchrotron emission arising from close to the base of the jet. For Sco X-1 the position angle of the radio jet on the sky is approximately perpendicular to the near-infrared position angle (electric vector), suggesting that the magnetic field is aligned with the jet. These observations may be a first step towards probing the ordering, alignment, and variability of the outflow magnetic field, in a region closer to the central accreting object than is observed in the radio band.
Resumo:
This Letter describes the hit-to-lead progression and SAR of a series of biphenyl acetylene compounds derived from an HTS screening campaign targeting the mGlu(5) receptor. 'Molecular switches' were identified that modulated modes of pharmacology, and several compounds within this series were shown to be efficacious in reversal of amphetamine induced hyperlocomotion in rats after ip dosing, a preclinical model that shows similar positive effects with known antipsychotic agents. Published by Elsevier Ltd.
Resumo:
This Letter describes the discovery and SAR of three novel series of mGluR5 non-competitive antagonists/negative allosteric modulators (NAMs) not based on manipulation of an MPEP/MTEP chemotype identified by a functional HTS approach. This work demonstrates fundamentally new mGluR5 NAM chemotypes with submicromolar potencies, and further examples of a mode of pharmacology 'switch' to provide PAMs with a non-MPEP scaffold. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This Letter describes the synthesis and SAR of the novel positive allosteric modulator, VU0155041, a compound that has shown in vivo efficacy in rodent models of Parkinson's disease. The synthesis takes advantage of an iterative parallel synthesis approach to rapidly synthesize and evaluate a number of analogs of VU0155041. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Herein we disclose the synthesis and SAR of a series of 4-(phenylsulfamoyl)phenylacetamide compounds as mGlu(4) positive allosteric modulators (PAMs) that were identified via a functional HTS. An iterative parallel approach to these compounds culminated in the discovery of VU0364439 (11) which represents the most potent (19.8 nM) mGlu(4) PAM reported to date. (C) 2010 Elsevier Ltd. All rights reserved.