993 resultados para plant invasions
Resumo:
Callus was initiated in three different ‘‘esculenta’’ taro cultivars by culturing corm slices in the dark on half-strength MS medium supplemented with 2.0 mg/l 2,4- dichlorophenoxyacetic acid (2,4-D) for 20 days followed by subculture of all corm slices to half-strength MS medium containing 1.0 mg/l thidiazuron (TDZ). Depending on the cultivar, 20–30% of corm slices produced compact, yellow, nodular callus on media containing TDZ. Histological studies revealed the presence of typical embryogenic cells which were small, isodiametric with dense cytoplasms. Somatic embryos formed when callus was transferred to hormone-free medium and *72% of the embryos germinated into plantlets on this medium. Simultaneous formation of roots and shoots during germination, and the presence of shoot and root poles revealed by histology, confirmed that these structures were true somatic embryos. Plants derived from somatic embryos appeared phenotypically normal following 2 months growth in a glasshouse. This method is a significant advance on those previously reported for the esculenta cultivars of taro due to its efficiency and reproducibility.
Resumo:
Embryogenic callus was initiated by culturing in vitro taro corm slices on agar-solidified half-strength MS medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 20 days followed by transfer to 1.0 mg/L thidiazuron (TDZ). Callus was subsequently proliferated on solid medium containing 1.0 mg/L TDZ, 0.5 mg/L 2,4- D and 800 mg/L glutamine before transfer to liquid medium containing the same components but with reduced glutamine (100 mg/L). After 3 months in liquid culture on an orbital shaker, cytoplasmically dense cell aggregates began to form. Somatic embryogenesis was induced by plating suspension cells onto solid media containing reduced levels of hormones (0.1 mg/L TDZ, 0.05 mg/L 2,4-D), high concentrations of sucrose (40–50 g/L) and biotin (1.0 mg/L). Embryo maturation and germination was then induced on media containing 0.05 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-acetic acid (IAA). Histological studies of the developing embryos revealed the presence of typical shoot and root poles suggesting that these structures were true somatic embryos. The rate of somatic embryos formation was 500–3,000 per mL settledcell volume while approximately 60% of the embryos regenerated into plants.
Resumo:
In this research the reliability and availability of fiberboard pressing plant is assessed and a cost-based optimization of the system using the Monte- Carlo simulation method is performed. The woodchip and pulp or engineered wood industry in Australia and around the world is a lucrative industry. One such industry is hardboard. The pressing system is the main system, as it converts the wet pulp to fiberboard. The assessment identified the pressing system has the highest downtime throughout the plant plus it represents the bottleneck in the process. A survey in the late nineties revealed there are over one thousand plants around the world, with the pressing system being a common system among these plants. No work has been done to assess or estimate the reliability of such a pressing system; therefore this assessment can be used for assessing any plant of this type.
Resumo:
In plant cells, myosin is believed to be the molecular motor responsible for actin-based motility processes such as cytoplasmic streaming and directed vesicle transport. In an effort to characterize plant myosin, a cDNA encoding a myosin heavy chain was isolated from Arabidopsis thaliana. The predicted product of the MYA1 gene is 173 kDa and is structurally similar to the class V myosins. It is composed of the highly-conserved NH2-terminal "head" domain, a putative calmodulin-binding "neck" domain an alpha-helical coiled-coil domain, and a COOH-terminal domain. Northern blot analysis shows that the Arabidopsis MYA1 gene is expressed in all the major plant tissues (flower, leaf, root, and stem). We suggest that the MYA1 myosin may be involved in a general intracellular transport process in plant cells.
Resumo:
A simple mathematical model is presented to describe the cell separation process that plants undertake in order to deliberately shed organs. The focus here is on modelling the production of the enzyme polygalacturonase, which breaks down pectin that provides natural cell-to-cell adhesion in the localised abscission zone. A coupled system of three ordinary differential equations is given for a single cell, and then extended to hold for a layer of cells in the abscission zone. Simple observations are made based on the results of this preliminary model and, furthermore, a number of opportunities for applied mathematicians to make contributions in this subject area are discussed.
Resumo:
ABSTR.4CT Senitivity of dot-immunobindinding ELf SA on nitrocellulose membrane (DotELISA)was compared with double-antibody sandwich ELISA (DAS-ELlSA) on polystyrene plates for the detection of bean yellow mosaic virus (BYMV), broad bean stain virus (WMV-2). Dot-ELISA was 2 and 1O times more sensitive than DAS-ELISA for the detection of BBSV and WMV-2, respectively, whereas DAS-ELISA was more sensitive than Dot-ELiSA for {he detection of BYMV. Both techniques were equally sensitive for the detection of BYDV. Using one day instead uf the two-day procedure, the four viruses were still detectable and the ralative sensitivity of both techniques remained the same.
Resumo:
Somatic embryogenesis and transformation systems are indispensable modern plant breeding components since they provide an alternative platform to develop control strategies against the plethora of pests and diseases affecting many agronomic crops. This review discusses some of the factors affecting somatic embryogenesis and transformation, highlights the advantages and limitations of these systems and explores these systems as breeding tools for the development of crops with improved agronomic traits. The regeneration of non-chimeric transgenic crops through somatic embryogenesis with introduced disease and pest-resistant genes for instance, would be of significant benefit to growers worldwide.