940 resultados para pigment inhibitors
Resumo:
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by omega-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation. J. Exp. Zool. 313A:605-617, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
TNF-alpha neutralising agents such as Infliximab (Remicade(R)), Etanercept (Enbrel(R)) and the IL-1 receptor antagonist Anakinra (Kineret(R)), are currently used clinically for the treatment of many inflammatory diseases such as Crohn's disease, rheumatoid arthritis, ankylosing spondylitis, juvenile rheumatoid arthritis, psoriatic arthritis and psoriasis. These protein preparations are expensive to manufacture and administer, need to be injected and can cause allergic reactions. An alternative approach to lowering the levels of TNF-alpha and IL-1 beta in inflammatory disease, is to inhibit the enzymes that generate these cytokines using cheaper small molecules. This paper is a broad overview of the progress that has been achieved so far, with respect to small molecule inhibitor design and pharmacological studies (in animals and humans), for the metalloprotease Tumour Necrosis Factor-alpha Converting Enzyme (TACE) and the cysteine protease Caspase-1 (Interieukin-1 beta Converting Enzyme, ICE). Inhibitors of these two enzymes are currently considered to be good therapeutic targets that have the potential to provide relatively inexpensive and orally bioavailable anti-inflammatory agents in the future.
Resumo:
As larvae of marine invertebrates age, their response to settlement cues can change. This change can have significant consequences to both the ecology of these organisms, and to their response to antifouling coatings. This study examines how larval age affects the settlement response of larvae to two naturally derived settlement inhibitors, non-polar extracts from the algae Delisea pulchra and Dilophus marginatus, the former of which contains compounds that are in commercial development as antifoulants. Two species of marine invertebrates with non-feeding larvae were investigated: the bryozoans Watersipora subtorquata and Bugula neritina. Larval age strongly affected larval settlement, with older larvae settling at much higher rates than younger larvae. Despite having strong, inhibitory effects on young larvae, the non-polar extracts did not inhibit the settlement of older larvae to the same degree for both species studied. The results show that the effects of ecologically realistic settlement inhibitors are highly dependent on larval age. Given that the age of settling larvae is likely to be variable in the field, such age specific variation in settlement response of larvae may have important consequences for host-epibiont interactions in natural communities.
Resumo:
Viability and functional results of a segment replantation depend on the prevention of deleterious effects of ischemia. Prolonged ischemia leads to alterations in the microcirculation: thrombosis, edema, production of oxygen free radicals, and platelet aggregation. The effect of IIb-IIIa glycoprotein inhibitors was tested in a partial limb amputation model submitted to warm ischemia. The male Wistar rats were divided into four groups: G1 with 0 hours of ischemia and saline (n = 20), G2 with 6 hours of ischemia and saline (n = 24), G3 with 6 hours of ischemia and abciximab (n = 23), and G4 with 6 hours of ischemia and tirofiban (n = 29). The limbs were observed for 7 days and classified as viable or nonviable. Viability, and mortality rates were obtained and analyzed by Q-square and Fisher exact tests (p < 0.05). The viability rates were 100% (G1), 30% (G2), 77.78% (G3), and 80.95% (G4). G2 was statistically different from G1, G3, and G4. G1, G3, and G4 were not statistically different. Transoperative and postoperative mortalities were not statistically different. The administration of abciximab and tirofiban improved limb salvage after ischemia and reperfusion and did not modify mortality rates significantly.
Resumo:
Cytokines are secreted proteins that regulate important cellular responses such as proliferation and differentiation(1). Key events in cytokine signal transduction are well defined: cytokines induce receptor aggregation, leading to activation of members of the JAK family of cytoplasmic tyrosine kinases. In turn, members af the STAT family of transcription factors are phosphorylated, dimerize and increase the transcription of genes with STAT recognition sites in their promoters(1-4). Less is known of how cytokine signal transduction is switched off. We have cloned a complementary DNA encoding a protein SOCS-1, containing an SH2-domain, by its ability to inhibit the macrophage differentiation of M1 cells in response to interleukin-6. Expression of SOCS-1 inhibited both interleukin-6-induced receptor phosphorylation and STAT activation. We have also cloned two-relatives of SOCS-1, named SOCS-2 and SOCS-3, which together with the previously described CIS (ref. 5) form a new family of proteins. Transcription of all four SOCS genes is increased rapidly in response to interleukin-6, in vitro and in vivo, suggesting they may act in a classic negative feedback loop to regulate cytokine signal transduction.
Resumo:
After 12 weeks of selective serotonin reuptake inhibitor (SSRI) monotherapy with inadequate response, 10 patients received clomipramine and 11 received quetiapine as augmentation agents of the SSRI. The primary outcome measure was the difference between initial and final scores of the YaleBrown Obsessive-Compulsive Scale (Y-BOCS), rated in a blinded fashion, and the score of clinical global improvement (CGI-I). Statistical analyses were performed using nonparametric tests to evaluate treatment efficacy and the difference between treatment groups. Percentile plots were constructed with YBOCS scores from the clomipramine and quetiapine groups. Considering response a >= 35% reduction in the initial Y-BOCS score plus a rating of `much improved` or `very much improved` on CGI-I, four of eleven quetiapine patients and one out of ten clomipramine patients were classified as responders. The mean final Y-BOCS score was significantly lower than baseline in the quetiapine augmentation group (P = 0.023), but not in the clomipramine augmentation group (P = 0.503). The difference between groups showed a trend towards significance only at week 4, the mean Y-BOCS score being lower for those receiving quetiapine (P = 0.052). A difference between groups was also observed at week 4 according to percentile plots. These results corroborate previous findings of quetiapine augmentation efficacy in obsessive-compulsive disorder (OCD). Clomipramine augmentation did not produce a significant reduction in Y-BOCS scores. Higher target maximum dosages might have yielded different results.
Resumo:
Background: Selective serotonin reuptake inhibitors (SSRIs) are first-line treatments for posttraumatic stress disorder (PTSD). Serotonergic (5HT) attenuation of stress sensitivity is postulated from SSRIs` effects in other anxiety disorders, and we studied this in PTSD. Methods: Ten patients with PTSD fully recovered on SSRIs (Clinical Global Impression Scale-I 1 and 2) were enrolled in the study. Patients were tested on two occasions I week apart; in each session, they received a drink containing large neutral amino acids (LNAAs) either with (sham tryptophan depletion [STD], control) or without (acute tryptophan depletion [ATD]) tryptophan. At 5.5 hours after the drink, subjects were exposed to a trauma-related exposure challenge. Self-reports of PTSD (visual analogue scales [VAS] and the Davidson Trauma Scale [DTSI), anxiety (Spielberger State Inventory [STAI] Form Y-1), and mood (Profile of Mood States [POMS]) were obtained. Heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressure were also measured. Results: The trauma-related exposure challenge induced anxiety on both days, with more marked responses on the ATD day according to VAS, DTS, POMS, and DBP (p < .05). A trend of significance (.1 > p >.05) was observed for STAI Form Y-1, HR, and SBP. Conclusions: These data demonstrate that ATD accentuates responses to trauma-related stimuli in SSRI-recovered PTSD. They also suggest that SSRI-induced increases in serotonin function restrain PTSD symptoms, especially under provocation, supporting a role for serotonin in mediating stress resilience.
Resumo:
Individual randomized clinical trials (RCTs) with cholinesterase inhibitors (ChEIs) aiming to delay the progression from mild cognitive impairment (MCI) to Alzheimer`s disease (AD) have not found significant benefit of their use for this purpose. The objective of this study is to meta-analyze the RCTs conducted with ChEIs in order to assess whether pooled analysis could show the benefit of these drugs in delaying the progression from MCI to AD. We searched for references of published and unpublished studies on electronic databases (Medline, Embase, Web of Science, and Clinical Trial Database Registry, particularly the Clinicaltrials.gov-http://www.clinicaltrials.gov). We retrieved 173 references, which yielded three references for data extraction. A total of 3.574 subjects from four RCTs were included in the meta-analysis. Among 1,784 subjects allocated in the ChEI-treatment group, 275 (15.4%) progressed to AD/dementia, as opposed to 366 (20.4%) out of 1,790 subjects in the placebo group. The relative risk (RR) for progression to AD/dementia in the ChEI-treated group was 0.75 [CI(95%) 0.66-0.87], z = -3.89, P < 0.001. The patients on the ChEI group had a significantly higher all-cause dropout risk than the patients on the placebo group (RR = 1.36 CI(95%) [1.24-1.49]; z = 6.59, P < 0.001). The RR for serious adverse events (SAE) in the ChEI-treated group showed no significantly statistical difference from the placebo group (RR = 0.95 [CI(95%) 0.83-1.09], z = -0.72, P = 0.47). The subjects in the ChEI-treated group had a marginally, non-significant, higher risk of death due to any cause than those in the placebo-treated group (RR = 1.04, CI(95%) 0.63-1.70, z = 0.16, P = 0.86). The long-term use of ChEIs in subjects with MCI may attenuate the risk of progression to AD/dementia. This finding may have a significant impact on public health and pharmaco-economic policies.
Resumo:
Objectives: To compare the circulating levels of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitors of metalloproteinase (TIMP)-1, TIMP-2, and the MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios in preeclampsia and gestational hypertension with those found in normotensive pregnancies. Design and methods: We studied 83 pregnant women (30 healthy pregnant women with uncomplicated pregnancies, 26 with gestational hypertension, and 27 with preeclampsia) and 30 healthy nonpregnant women in a cross-sectional study. MMP and TIMP concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Results: We found higher plasma pro-MMP-9 levels, and higher pro-MMP-9/TIMP-1 ratios in women with gestational hypertension (95%-CI: 1.031 to 2.357, and 0.012 to 0.031, respectively), but not with preeclampsia, compared with those found in normotensive pregnant women (95%-CI: 0.810 to 1.350, and 0.006 to 0.013, respectively; both P<0.05). We found no significant differences in pro-MMP-2 levels (P>0.05). Conclusions: The higher net MMP-9 (but not MMP-2) activity in gestational hypertension compared with normotensive pregnancy suggests that MMP-9 plays a role in the pathophysiology of gestational hypertension. Conversely, the lack of such alterations in preeclampsia is consistent with the notion that different pathophysiological mechanisms are involved in these hypertensive disorders. (C) 2008 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Resumo:
Snake venom C-type lectin-like proteins (CLPs) are ubiquitously found in Viperidae snake venoms and differ from the C-type lectins as they display different biological activities but no carbohydrate-binding activity. Previous analysis of the transcriptome obtained from the Bothrops insularis venom gland showed the presence of two clusters homologous to bothrojaracin (BJC) chains a and P. In an effort to identify a new BJC-like molecule, we used an approach associated with proteomic technologies to identify the presence of the expressed protein and then to purify and characterize a new thrombin inhibitor from B. insularis venom. We also constructed homology models of this protein and BJC, which were compared with other C-type lectin-like family members and revealed several conserved features of this intriguing snake venom toxin family. (C)0 2007 Elsevier Ltd. All rights reserved.
Resumo:
Background and Objective: Substance P may play a role in the pathogenesis of periodontal disease; however, its mechanisms of modulation are not clear. This study evaluated the effect of two concentrations of Substance P on the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in cultured human gingival fibroblasts. Materials and Methods: Fibroblasts were stimulated for 48 h with 10(-4) or 10(-9) m Substance P; untreated fibroblasts served as controls. The expression of MMP-1, -2, -3, -7 and -11 and of TIMP-1 and -2 was evaluated using real-time polymerase chain reaction and western blotting. Resulsts: There was a significant, concentration-dependent stimulatory effect of Substance P on MMP-1, -2, -3 and -7 and TIMP-2 gene expression (p < 0.05), and a probable effect on MMP-11 (p = 0.06). At the higher concentration (10(-4) m Substance P), MMP-1, -2, -3, -7 and -11 and TIMP-2 showed the greatest up-regulation; at the lower concentration (10(-9) (M) Substance P), MMP-1, -3 and -7 and TIMP-2 exhibited diminished up-regulation, with MMP-2 and -11 showing down-regulation (p < 0.05). Expression of TIMP-1 was not affected by Substance P (p > 0.05). Western blotting confirmed that Substance P up-regulated MMP-1, -2, -3 and -11 and TIMP-2. MMP-1, -3 and -11 and TIMP-2 showed greater up-regulation at the higher Substance P concentration and diminished up-regulation at the lower concentration. MMP-2 was up-regulated to a similar degree at both Substance P concentrations. Conclusion: In gingival fibroblast cells, Substance P at the higher concentration (10(-4) m) induced greater up-regulation of MMP-1, -3 and -11 and TIMP-2 expression, but at the lower concentration (10(-9) (M)) induced diminished up-regulation, which may represent a mechanism for modulating periodontal breakdown.
Resumo:
Matrix metalloproteinase (MMP) inhibition has been shown to reduce dentin caries progression, but its role in dental erosion has not yet been assessed. This study tested the hypothesis that gels containing MMP inhibitors (epigallocatechin gallate-EGCG and chlorhexidine) can prevent dental erosion. Volunteers (n = 10) wore palatal devices containing bovine dentin blocks (n = 10/group) treated for 1 min with EGCG at 10 (EGCG10) or 400 mu M (EGCG400), chlorhexidine at 0.012%, F at 1.23% (NaF), and no vehicle (placebo). Erosion was performed with Coca-Cola (R) (5 min) 4X/day during 5 days. The wear, assessed by profilometry (mean +/- SD, mu m), was significantly reduced by the gels containing MMP inhibitors (0.05 +/- 0.02(a), 0.04 +/- 0.02(a), and 0.05 +/- 0.02(a) for EGCG10, EGCG400, and chlorhexidine, respectively) when compared with NaF (0.79 +/- 0.35(b)) and placebo gels (1.77 +/- 0.35(b)) (Friedman and Dunn`s tests, p < 0.01). The use of gels delivering MMP inhibitors was shown to prevent erosion and opens a new perspective for protection against dental erosion.
Resumo:
Background: Oral lichen planus (OLP) is characterized by a subepithelial lymphocytic infiltrate, basement membrane (BM) disruption, intra-epithelial T-cell migration and apoptosis of basal keratinocytes. BM damage and T-cell migration in OLP may be mediated by matrix metalloproteinases (MMPs). Methods: We examined the distribution, activation and cellular sources of MMPs and their inhibitors (TIMPs) in OLP using immunohistochemistry, ELISA, RT-PCR and zymography. Results: MMP-2 and -3 were present in the epithelium while MMP-9 was associated with the inflammatory infiltrate. MMP-9 and TIMP-1 secretion by OLP lesional T cells was greater than OLP patient (p