979 resultados para personal network
Resumo:
Voltage rise is the main issue which limits the capacity of Low Voltage (LV) network to accommodate more Renewable Energy (RE) sources. In addition, voltage drop at peak load period is a significant power quality concern. This paper proposes a new robust voltage support strategy based on distributed coordination of multiple distribution static synchronous compensators (DSTATCOMs). The study focuses on LV networks with PV as the RE source for customers. The proposed approach applied to a typical LV network and its advantages are shown comparing with other voltage control strategies.
Resumo:
The practice of medicine has always aimed at individualized treatment of disease. The relationship between patient and physician has always been a personal one, and the physician's choice of treatment has been intended to be the best fit for the patient's needs. The necessary pooling/grouping of disease families and their assignment to a number of drugs or treatment methods has, consequently, led to an increase in the number of effective therapies. However, given the heterogeneity of most human diseases, and cancer specifically, it is currently impossible for the treating clinician to effectively predict a patient's response and outcome based on current technologies, much less the idiosyncratic resistances and adverse effects associated with the limited therapeutic options.
Resumo:
This paper introduces a new method to automate the detection of marine species in aerial imagery using a Machine Learning approach. Our proposed system has at its core, a convolutional neural network. We compare this trainable classifier to a handcrafted classifier based on color features, entropy and shape analysis. Experiments demonstrate that the convolutional neural network outperforms the handcrafted solution. We also introduce a negative training example-selection method for situations where the original training set consists of a collection of labeled images in which the objects of interest (positive examples) have been marked by a bounding box. We show that picking random rectangles from the background is not necessarily the best way to generate useful negative examples with respect to learning.
Resumo:
Network Real-Time Kinematic (NRTK) is a technology that can provide centimeter-level accuracy positioning services in real time, and it is enabled by a network of Continuously Operating Reference Stations (CORS). The location-oriented CORS placement problem is an important problem in the design of a NRTK as it will directly affect not only the installation and operational cost of the NRTK, but also the quality of positioning services provided by the NRTK. This paper presents a Memetic Algorithm (MA) for the location-oriented CORS placement problem, which hybridizes the powerful explorative search capacity of a genetic algorithm and the efficient and effective exploitative search capacity of a local optimization. Experimental results have shown that the MA has better performance than existing approaches. In this paper we also conduct an empirical study about the scalability of the MA, effectiveness of the hybridization technique and selection of crossover operator in the MA.
Resumo:
Overvoltage and overloading due to high utilization of PVs are the main power quality concerns for future distribution power systems. This paper proposes a distributed control coordination strategy to manage multiple PVs within a network to overcome these issues. PVs reactive power is used to deal with over-voltages and PVs active power curtailment are regulated to avoid overloading. The proposed control structure is used to share the required contribution fairly among PVs, in proportion to their ratings. This approach is examined on a practical distribution network with multiple PVs.
Resumo:
In this paper, we propose a new load distribution strategy called `send-and-receive' for scheduling divisible loads, in a linear network of processors with communication delay. This strategy is designed to optimally utilize the network resources and thereby minimizes the processing time of entire processing load. A closed-form expression for optimal size of load fractions and processing time are derived when the processing load originates at processor located in boundary and interior of the network. A condition on processor and link speed is also derived to ensure that the processors are continuously engaged in load distributions. This paper also presents a parallel implementation of `digital watermarking problem' on a personal computer-based Pentium Linear Network (PLN) topology. Experiments are carried out to study the performance of the proposed strategy and results are compared with other strategies found in literature.
Resumo:
This study deals with language change and variation in the correspondence of the eighteenth-century Bluestocking circle, a social network which provided learned men and women with an informal environment for the pursuit of scholarly entertainment. Elizabeth Montagu (1718 1800), a notable social hostess and a Shakespearean scholar, was one of their key figures. The study presents the reconstruction of Elizabeth Montagu s social networks from her youth to her later years with a special focus on the Bluestocking circle, and linguistic research on private correspondence between Montagu and her Bluestocking friends and family members between the years 1738 1778. The epistolary language use is investigated using the methods and frameworks of corpus linguistics, historical sociolinguistics, and social network analysis. The approach is diachronic and concerns real-time language change. The research is based on a selection of manuscript letters which I have edited and compiled into an electronic corpus (Bluestocking Corpus). I have also devised a network strength scale in order to quantify the strength of network ties and to compare the results of the linguistic research with the network analysis. The studies range from the reconstruction and analysis of Elizabeth Montagu s most prominent social networks to the analysis of changing morphosyntactic features and spelling variation in Montagu s and her network members correspondence. The linguistic studies look at the use of the progressive construction, preposition stranding and pied piping, and spelling variation in terms of preterite and past participle endings in the regular paradigm (-ed, - d, -d, - t, -t) and full / contracted spellings of auxiliary verbs. The results are analysed in terms of social network membership, sociolinguistic variables of the correspondents, and, when relevant, aspects of eighteenth-century linguistic prescriptivism. The studies showed a slight diachronic increase in the use of the progressive, a significant decrease of the stigmatised preposition stranding and increase of pied piping, and relatively informal but socially controlled epistolary spelling. Certain significant changes in Elizabeth Montagu s language use over the years could be attributed to her increasingly prominent social standing and the changes in her social networks, and the strength of ties correlated strongly with the use of the progressive in the Bluestocking Corpus. Gender, social rank, and register in terms of kinship/friendship had a significant influence in language use, and an effect of prescriptivism could also be detected. Elizabeth Montagu s network ties resulted in language variation in terms of network membership, her own position in a given network, and the social factors that controlled eighteenth-century interaction. When all the network ties are strong, linguistic variation seems to be essentially linked to the social variables of the informants.
Resumo:
Distinct endogenous network events, generated independently of sensory input, are a general feature of various structures of the immature central nervous system. In the immature hippocampus, these type of events are seen as "giant depolarizing potentials" (GDPs) in intracellular recordings in vitro. GABA, the major inhibitory neurotransmitter of the adult brain, has a depolarizing action in immature neurons, and GDPs have been proposed to be driven by GABAergic transmission. Moreover, GDPs have been thought to reflect an early pattern that disappears during development in parallel with the maturation of hyperpolarizing GABAergic inhibition. However, the adult hippocampus in vivo also generates endogenous network events known as sharp (positive) waves (SPWs), which reflect synchronous discharges of CA3 pyramidal neurons and are thought to be involved in cognitive functions. In this thesis, mechanisms of GDP generation were studied with intra- and extracellular recordings in the neonatal rat hippocampus in vitro and in vivo. Immature CA3 pyramidal neurons were found to generate intrinsic bursts of spikes and to act as cellular pacemakers for GDP activity whereas depolarizing GABAergic signalling was found to have a temporally non-patterned facilitatory role in the generation of the network events. Furthermore, the data indicate that the intrinsic bursts of neonatal CA3 pyramidal neurons and, consequently, GDPs are driven by a persistent Na+ current and terminated by a slow Ca2+-dependent K+ current. Gramicidin-perforated patch recordings showed that the depolarizing driving force for GABAA receptor-mediated actions is provided by Cl- uptake via the Na-K-C1 cotransporter, NKCC1, in the immature CA3 pyramids. A specific blocker of NKCC1, bumetanide, inhibited SPWs and GDPs in the neonatal rat hippocampus in vivo and in vitro, respectively. Finally, pharmacological blockade of the GABA transporter-1 prolonged the decay of the large GDP-associated GABA transients but not of single postsynaptic GABAA receptor-mediated currents. As a whole the data in this thesis indicate that the mechanism of GDP generation, based on the interconnected network of bursting CA3 pyramidal neurons, is similar to that involved in adult SPW activity. Hence, GDPs do not reflect a network pattern that disappears during development but they are the in vitro counterpart of neonatal SPWs.
Resumo:
The blood and lymphatic vascular systems are essential for life, but they may become harnessed for sinister purposes in pathological conditions. For example, tumors learn to grow a network of blood vessels (angiogenesis), securing a source of oxygen and nutrients for sustained growth. On the other hand, damage to the lymph nodes and the collecting lymphatic vessels may lead to lymphedema, a debilitating condition characterized by peripheral edema and susceptibility to infections. Promoting the growth of new lymphatic vessels (lymphangiogenesis) is an attractive approach to treat lymphedema patients. Angiopoietin-1 (Ang1), a ligand for the endothelial receptor tyrosine kinases Tie1 and Tie2. The Ang1/Tie2 pathway has previously been implicated in promoting endothelial stability and integrity of EC monolayers. The studies presented here elucidate a novel function for Ang1 as a lymphangiogenic factor. Ang1 is known to decrease the permeability of blood vessels, and could thus act as a more global antagonist of plasma leakage and tissue edema by promoting growth of lymphatic vessels and thereby facilitating removal of excess fluid and other plasma components from the interstitium. These findings reinforce the idea that Ang1 may have therapeutic value in conditions of tissue edema. VEGFR-3 is present on all endothelia during development, but in the adult its expression becomes restricted to the lymphatic endothelium. VEGF-C and VEGF-D are ligands for VEGFR-3, and potently promote lymphangiogenesis in adult tissues, with direct and remarkably specific effects on the lymphatic endothelium in adult tissues. The data presented here show that VEGF-C and VEGF-D therapy can restore collecting lymphatic vessels in a novel orthotopic model of breast cancer-related lymphedema. Furthermore, the study introduces a novel approach to improve VEGF-C/VEGF-D therapy by using engineered heparin-binding forms of VEGF-C, which induced the rapid formation of organized lymphatic vessels. Importantly, VEGF-C therapy also greatly improved the survival and integration of lymph node transplants. The combination of lymph node transplantation and VEGF-C therapy provides a basis for future therapy of lymphedema. In adults, VEGFR-3 expression is restricted to the lymphatic endothelium and the fenestrated endothelia of certain endocrine organs. These results show that VEGFR-3 is induced at the onset of angiogenesis in the tip cells that lead the formation of new vessel sprouts, providing a tumor-specific vascular target. VEGFR-3 acts downstream of VEGF/VEGFR-2 signals, but, once induced, can sustain angiogenesis when VEGFR-2 signaling is inhibited. The data presented here implicate VEGFR-3 as a novel regulator of sprouting angiogenesis along with its role in regulating lymphatic vessel growth. Targeting VEGFR-3 may provide added efficacy to currently available anti-angiogenic therapeutics, which typically target the VEGF/VEGFR-2 pathway.
Resumo:
The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.
Resumo:
Telecommunications network management is based on huge amounts of data that are continuously collected from elements and devices from all around the network. The data is monitored and analysed to provide information for decision making in all operation functions. Knowledge discovery and data mining methods can support fast-pace decision making in network operations. In this thesis, I analyse decision making on different levels of network operations. I identify the requirements decision-making sets for knowledge discovery and data mining tools and methods, and I study resources that are available to them. I then propose two methods for augmenting and applying frequent sets to support everyday decision making. The proposed methods are Comprehensive Log Compression for log data summarisation and Queryable Log Compression for semantic compression of log data. Finally I suggest a model for a continuous knowledge discovery process and outline how it can be implemented and integrated to the existing network operations infrastructure.