973 resultados para peripheral blood
Resumo:
The production of fully functional human red cells in vitro from haematopoietic stem cells (hHSCs) has been successfully achieved. Recently, the use of hHSCs from cord blood represented a major improvement to develop the continuous culture system for Plasmodium vivax. Here, we demonstrated that CD34+hHSCs from peripheral blood and bone marrow can be expanded and differentiated to reticulocytes using a novel stromal cell. Moreover, these reticulocytes and mature red blood cells express surface markers for entrance of malaria parasites contain adult haemoglobin and are also permissive to invasion by P. vivax and Plasmodium falciparum parasites.
Resumo:
Fibrocytes are important for understanding the progression of many diseases because they are present in areas where pathogenic lesions are generated. However, the morphology of fibrocytes and their interactions with parasites are poorly understood. In this study, we examined the morphology of peripheral blood fibrocytes and their interactions with Leishmania (L.) amazonensis . Through ultrastructural analysis, we describe the details of fibrocyte morphology and how fibrocytes rapidly internaliseLeishmania promastigotes. The parasites differentiated into amastigotes after 2 h in phagolysosomes and the infection was completely resolved after 72 h. Early in the infection, we found increased nitric oxide production and large lysosomes with electron-dense material. These factors may regulate the proliferation and death of the parasites. Because fibrocytes are present at the infection site and are directly involved in developing cutaneous leishmaniasis, they are targets for effective, non-toxic cell-based therapies that control and treat leishmaniasis.
Resumo:
Transforming growth factor beta (TGF-beta) has been shown to be a central immunomodulator used by leishmaniae to escape effective mechanisms of protection in human and murine infections with these parasites. However, all the information is derived from studies of established infection, while little is known about TGF-beta production in response to Leishmania stimulation in healthy subjects. In this study, TGF-beta1 production was demonstrated in peripheral blood mononuclear cells from healthy subjects never exposed to leishmaniae in response to live Leishmania guyanensis, and the TGF-beta1-producing cells were described as a distinct subpopulation of CD4(+) CD25(+) regulatory T cells. The suppressive properties of CD4(+) CD25(+) T cells were demonstrated in vitro by their inhibition of production of interleukin 2 (IL-2) and IL-10 by CD4(+) CD25(-) T cells in the presence of either anti-CD3 or L. guyanensis. Although neutralization of TGF-beta1 did not reverse the suppressive activity of CD4(+) CD25(+) T cells activated by anti-CD3, it reversed the suppressive activity of CD4(+) CD25(+) T cells activated by L. guyanensis. Altogether our data demonstrated that TGF-beta1 is involved in the suppressive activity of L. guyanensis-stimulated CD4(+) CD25(+) T cells from healthy controls.
Resumo:
A single-step PCR assay with genus-specific primers for the amplification of a 223-bp region of the sequence encoding a 31-kDa immunogenetic Brucella abortus protein (BCSP31) was used for the rapid diagnosis of human brucellosis. We examined peripheral blood from 47 patients, with a total of 50 cases of brucellosis, and a group of 60 control subjects, composed of patients with febrile syndromes of several etiologies other than brucellosis, asymptomatic subjects seropositive for Brucella antibodies, and healthy subjects. Diagnosis of brucellosis was established in 35 cases (70%) by isolation of Brucella in blood culture and in the other 15 cases (30%) by clinical and serological means. The sensitivity of our PCR assay was 100%, since it correctly identified all 50 cases of brucellosis, regardless of the duration of the disease, the positivity of the blood culture, or the presence of focal forms. The specificity of the test was 98.3%, and the only false-positive result was for a patient who had had brucellosis 2 months before and possibly had a self-limited relapse. In those patients who relapsed, the results of our PCR assay were positive for both the initial infection and the relapse, becoming negative once the relapse treatment was completed and remaining negative in the follow-up tests at 2, 4, and 6 months. In conclusion, these results suggest that the PCR assay is rapid and easy to perform and highly sensitive and specific, and it may therefore be considered a useful tool for diagnosis of human brucellosis.
Resumo:
We studied two of the possible factors which can interfere with specific DNA amplification in a peripheral-blood PCR assay used for the diagnosis of human brucellosis. We found that high concentrations of leukocyte DNA and heme compounds inhibit PCR. These inhibitors can be efficiently suppressed by increasing the number of washings to four or five and decreasing the amount of total DNA to 2 to 4 microg, thereby avoiding false-negative results.
Resumo:
Precise identification of regulatory T cells is crucial in the understanding of their role in human cancers. Here, we analyzed the frequency and phenotype of regulatory T cells (Tregs), in both healthy donors and melanoma patients, based on the expression of the transcription factor FOXP3, which, to date, is the most reliable marker for Tregs, at least in mice. We observed that FOXP3 expression is not confined to human CD25(+/high) CD4(+) T cells, and that these cells are not homogenously FOXP3(+). The circulating relative levels of FOXP3(+) CD4(+) T cells may fluctuate close to 2-fold over a short period of observation and are significantly higher in women than in men. Further, we showed that FOXP3(+) CD4(+) T cells are over-represented in peripheral blood of melanoma patients, as compared to healthy donors, and that they are even more enriched in tumor-infiltrated lymph nodes and at tumor sites, but not in normal lymph nodes. Interestingly, in melanoma patients, a significantly higher proportion of functional, antigen-experienced FOXP3(+) CD4(+) T was observed at tumor sites, compared to peripheral blood. Together, our data suggest that local accumulation and differentiation of Tregs is, at least in part, tumor-driven, and illustrate a reliable combination of markers for their monitoring in various clinical settings.
Resumo:
In gram-negative bacteria, the outer membrane lipopolysaccharide is the main component triggering cytokine release from peripheral blood mononuclear cells (PBMCs). In gram-positive bacteria, purified walls also induce cytokine release, but stimulation requires 100 times more material. Gram-positive walls are complex megamolecules reassembling distinct structures. Only some of them might be inflammatory, whereas others are not. Teichoic acids (TA) are an important portion (> or =50%) of gram-positive walls. TA directly interact with C3b of complement and the cellular receptor for platelet-activating factor. However, their contribution to wall-induced cytokine-release by PBMCs has not been studied in much detail. In contrast, their membrane-bound lipoteichoic acids (LTA) counterparts were shown to trigger inflammation and synergize with peptidoglycan (PGN) for releasing nitric oxide (NO). This raised the question as to whether TA are also inflammatory. We determined the release of tumor necrosis factor (TNF) by PBMCs exposed to a variety of TA-rich and TA-free wall fragments from Streptococcus pneumoniae and Staphylococcus aureus. TA-rich walls from both organisms induced measurable TNF release at concentrations of 1 microg/ml. Removal of wall-attached TA did not alter this activity. Moreover, purified pneumococcal and staphylococcal TA did not trigger TNF release at concentrations as high as > or =100 microg/ml. In contrast, purified LTA triggered TNF release at 1 microg/ml. PGN-stem peptide oligomers lacking TA or amino-sugars were highly active and triggered TNF release at concentrations as low as 0.01 microg/ml (P. A. Majcherczyk, H. Langen, et al., J. Biol. Chem. 274:12537-12543,1999). Thus, although TA is an important part of gram-positive walls, it did not participate to the TNF-releasing activity of PGN.
Resumo:
Occupational exposure to metals such as cobalt and beryllium represents a risk factor for respiratory health and can cause immune-mediated diseases. However, the way they act may be different. We show here that the two metals have a divergent effect on peripheral T lymphocytes and monocytes: BeSO(4) induces cell death in monocytes but not in T lymphocytes, which instead respond by producing Interferon gamma (IFN-γ); conversely, CoCl(2) induces apoptosis in T lymphocytes but not in monocytes. Interestingly, both metals induce p53 overexpression but with a dramatic different outcome. This is because the effect of p53 in CoCl(2)-treated monocytes is counteracted by the antiapoptotic activity of cytoplasmic p21(Cip1/WAF1), the activation of nuclear factor κB, and the inflammasome danger signaling pathway leading to the production of proinflammatory cytokines. However, CoCl(2)-treated monocytes do not fully differentiate into macrophage or dendritic cells, as inferred by the lack of expression of CD16 and CD83, respectively. Furthermore, the expression of HLA-class II molecules, as well as the capability of capturing and presenting the antigens, decreased with time. In conclusion, cobalt keeps monocytes in a partially activated, proinflammatory state that can contribute to some of the pathologies associated with the exposure to this metal.
Resumo:
Highly quantitative biomarkers of neurodegenerative disease remain an important need in the urgent quest for disease-modifying therapies. For Huntington's disease (HD), a genetic test is available (trait marker), but necessary state markers are still in development. In this report, we describe a large battery of transcriptomic tests explored as state biomarker candidates. In an attempt to exploit the known neuroinflammatory and transcriptional perturbations of disease, we measured relevant mRNAs in peripheral blood cells. The performance of these potential markers was weak overall, with only one mRNA, immediate early response 3 (IER3), showing a modest but significant increase of 32% in HD samples compared with controls. No statistically significant differences were found for any other mRNAs tested, including a panel of 12 RNA biomarkers identified in a previous report [Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV, et al. (2005) Proc Natl Acad Sci USA 102:11023-11028]. The present results may nonetheless inform the future design and testing of HD biomarker strategies.
Resumo:
Pegfilgrastim is equivalent to daily filgrastim after standard dose chemotherapy in decreasing the duration of neutropenia. Daily filgrastim started within 1-4 days after autologous stem cell transplant (ASCT) leads to significant decrease in time to neutrophil engraftment. We undertook a study of pegfilgrastim after high-dose chemotherapy (HDC) and ASCT. In all, 38 patients with multiple myeloma or lymphoma, eligible to undergo HDC and ASCT, were enrolled. Patients received a single dose of 6 mg pegfilgrastim subcutaneously 24 h after ASCT. There were no adverse events secondary to pegfilgrastim. All patients engrafted neutrophils and platelets with a median of 10 and 18 days, respectively. The incidence of febrile neutropenia was 49% (18/37). Neutrophil engraftment results were compared to a historical cohort of patients who received no growth factors or prophylactic filgrastim after ASCT. Time to neutrophil engraftment using pegfilgrastim was comparable to daily filgrastim and was shorter than in a historical group receiving no filgrastim (10 vs 13.7 days, P<0.001). Pegfilgrastim given as a single fixed dose of 6 mg appears to be safe after HDC and ASCT. It accelerates neutrophil engraftment comparable to daily filgrastim after ASCT. Pegfilgrastim may be convenient to use in outpatient transplant units.
Resumo:
This trial was aimed to explore the efficacy of pegfilgrastim to accelerate neutrophil engraftment after stem cell autotransplant. Twenty patients with multiple myeloma and 20 with lymphoma received pegfilgrastim 6 mg on day +1. Forty cases treated with daily filgrastim starting at median day +7 (5-7), matched by age, sex, diagnosis, high-dose chemotherapy schedule, CD34 + cell-dose, and prior therapy lines, were used for comparison. Median time to neutrophil engraftment was 9.5 vs. 11 days for pegfilgrastim and filgrastim, respectively (p < 0.0001). Likewise, duration of neutropenia, intravenous antibiotic use, and hospitalization favored pegfilgrastim, while platelet engraftment, transfusion requirement, and fever duration were equivalent in both groups. No grade ≥ 3 toxicities were observed. Patients with lymphoma performed similarly to the entire cohort, while patients with myeloma showed faster neutrophil engraftment and shorter neutropenia but not shorter hospitalization and antibiotic use. The possibility of different outcomes for lymphoma and myeloma suggests that stratification by diagnosis may be useful in future phase III studies.
Resumo:
Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection.
Resumo:
Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection.
Resumo:
Juvenile dermatomyositis (JDM) is an immune-mediated inflammatory disease affecting the microvasculature of skin and muscle. CD4+CD25+FOXP3+ regulatory T cells (Tregs) are key regulators of immune homeostasis. A role for Tregs in JDM pathogenesis has not yet been established. Here, we explored Treg presence and function in peripheral blood and muscle of JDM patients. We analyzed number, phenotype and function of Tregs in blood from JDM patients by flow cytometry and in vitro suppression assays, in comparison to healthy controls and disease controls (Duchenne's Muscular Dystrophy). Presence of Tregs in muscle was analyzed by immunohistochemistry. Overall, Treg percentages in peripheral blood of JDM patients were similar compared to both control groups. Muscle biopsies of new onset JDM patients showed increased infiltration of numbers of T cells compared to Duchenne's muscular dystrophy. Both in JDM and Duchenne's muscular dystrophy the proportion of FOXP3+ T cells in muscles were increased compared to JDM peripheral blood. Interestingly, JDM is not a self-remitting disease, suggesting that the high proportion of Tregs in inflamed muscle do not suppress inflammation. In line with this, peripheral blood Tregs of active JDM patients were less capable of suppressing effector T cell activation in vitro, compared to Tregs of JDM in clinical remission. These data show a functional impairment of Tregs in a proportion of patients with active disease, and suggest a regulatory role for Tregs in JDM inflammation.