994 resultados para path integral quantization
Resumo:
Recent experimental measurements of the distribution P(w) of transverse chain fluctuations w in concentrated solutions of F-actin filaments B. Wang, J Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010); J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchgessner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)] are shown to be well-fit to an expression derived from a model of the conformations of a single harmonically confined weakly bendable rod. The calculation of P(w) is carried out essentially exactly within a path integral approach that was originally applied to the study of one-dimensional randomly growing interfaces. Our results are generally as successful in reproducing experimental trends as earlier approximate results obtained from more elaborate many-chain treatments of the confining tube potential. (C) 2013 AIP Publishing LLC.
Resumo:
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.
Resumo:
The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrodinger equation.
Resumo:
Accurate simulation of quantum dynamics in complex systems poses a fundamental theoretical challenge with immediate application to problems in biological catalysis, charge transfer, and solar energy conversion. The varied length- and timescales that characterize these kinds of processes necessitate development of novel simulation methodology that can both accurately evolve the coupled quantum and classical degrees of freedom and also be easily applicable to large, complex systems. In the following dissertation, the problems of quantum dynamics in complex systems are explored through direct simulation using path-integral methods as well as application of state-of-the-art analytical rate theories.
Resumo:
Proton-coupled electron transfer (PCET) reactions are ubiquitous throughout chemistry and biology. However, challenges arise in both the the experimental and theoretical investigation of PCET reactions; the rare-event nature of the reactions and the coupling between quantum mechanical electron- and proton-transfer with the slower classical dynamics of the surrounding environment necessitates the development of robust simulation methodology. In the following dissertation, novel path-integral based methods are developed and employed for the direct simulation of the reaction dynamics and mechanisms of condensed-phase PCET.
Resumo:
A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.
Resumo:
The identification of kinetic pathways is a central issue in understanding the nature of flexible binding. A new approach is proposed here to study the dynamics of this binding-folding process through the establishment of a path integral framework on the underlying energy landscape. The dominant kinetic paths of binding and folding can be determined and quantified. In this case, the corresponding kinetic paths of binding are shown to be intimately correlated with those of folding and the dynamics becomes quite cooperative. The kinetic time can be obtained through the contributions from the dominant paths and has a U-shape dependence on temperature.
Resumo:
Biomolecular recognition often involves large conformational changes, sometimes even local unfolding. The identification of kinetic pathways has become a central issue in understanding the nature of binding. A new approach is proposed here to study the dynamics of this binding-folding process through the establishment of a path-integral framework on the underlying energy landscape. The dominant kinetic paths of binding and folding can be determined and quantified. The significant coupling between the binding and folding of biomolecules often exists in many important cellular processes. In this case, the corresponding kinetic paths of binding are shown to be intimately correlated with those of folding and the dynamics becomes quite cooperative. This implies that binding and folding happen concurrently. When the coupling between binding and folding is weak (strong), the kinetic process usually starts with significant folding (binding) first, with the binding (folding) later proceeding to the end. The kinetic rate can be obtained through the contributions from the dominant paths. The rate is shown to have a bell-shaped dependence on temperature in the concentration-saturated regime consistent with experiment. The changes of the kinetics that occur upon changing the parameters of the underlying binding-folding energy landscape are studied.
Resumo:
The primary approaches for people to understand the inner properties of the earth and the distribution of the mineral resources are mainly coming from surface geology survey and geophysical/geochemical data inversion and interpretation. The purpose of seismic inversion is to extract information of the subsurface stratum geometrical structures and the distribution of material properties from seismic wave which is used for resource prospecting, exploitation and the study for inner structure of the earth and its dynamic process. Although the study of seismic parameter inversion has achieved a lot since 1950s, some problems are still persisting when applying in real data due to their nonlinearity and ill-posedness. Most inversion methods we use to invert geophysical parameters are based on iterative inversion which depends largely on the initial model and constraint conditions. It would be difficult to obtain a believable result when taking into consideration different factors such as environmental and equipment noise that exist in seismic wave excitation, propagation and acquisition. The seismic inversion based on real data is a typical nonlinear problem, which means most of their objective functions are multi-minimum. It makes them formidable to be solved using commonly used methods such as general-linearization and quasi-linearization inversion because of local convergence. Global nonlinear search methods which do not rely heavily on the initial model seem more promising, but the amount of computation required for real data process is unacceptable. In order to solve those problems mentioned above, this paper addresses a kind of global nonlinear inversion method which brings Quantum Monte Carlo (QMC) method into geophysical inverse problems. QMC has been used as an effective numerical method to study quantum many-body system which is often governed by Schrödinger equation. This method can be categorized into zero temperature method and finite temperature method. This paper is subdivided into four parts. In the first one, we briefly review the theory of QMC method and find out the connections with geophysical nonlinear inversion, and then give the flow chart of the algorithm. In the second part, we apply four QMC inverse methods in 1D wave equation impedance inversion and generally compare their results with convergence rate and accuracy. The feasibility, stability, and anti-noise capacity of the algorithms are also discussed within this chapter. Numerical results demonstrate that it is possible to solve geophysical nonlinear inversion and other nonlinear optimization problems by means of QMC method. They are also showing that Green’s function Monte Carlo (GFMC) and diffusion Monte Carlo (DMC) are more applicable than Path Integral Monte Carlo (PIMC) and Variational Monte Carlo (VMC) in real data. The third part provides the parallel version of serial QMC algorithms which are applied in a 2D acoustic velocity inversion and real seismic data processing and further discusses these algorithms’ globality and anti-noise capacity. The inverted results show the robustness of these algorithms which make them feasible to be used in 2D inversion and real data processing. The parallel inversion algorithms in this chapter are also applicable in other optimization. Finally, some useful conclusions are obtained in the last section. The analysis and comparison of the results indicate that it is successful to bring QMC into geophysical inversion. QMC is a kind of nonlinear inversion method which guarantees stability, efficiency and anti-noise. The most appealing property is that it does not rely heavily on the initial model and can be suited to nonlinear and multi-minimum geophysical inverse problems. This method can also be used in other filed regarding nonlinear optimization.
Resumo:
We present an implementation of quantum annealing (QA) via lattice Green's function Monte Carlo (GFMC), focusing on its application to the Ising spin glass in transverse field. In particular, we study whether or not such a method is more effective than the path-integral Monte Carlo- (PIMC) based QA, as well as classical simulated annealing (CA), previously tested on the same optimization problem. We identify the issue of importance sampling, i.e., the necessity of possessing reasonably good (variational) trial wave functions, as the key point of the algorithm. We performed GFMC-QA runs using such a Boltzmann-type trial wave function, finding results for the residual energies that are qualitatively similar to those of CA (but at a much larger computational cost), and definitely worse than PIMC-QA. We conclude that, at present, without a serious effort in constructing reliable importance sampling variational wave functions for a quantum glass, GFMC-QA is not a true competitor of PIMC-QA.
Resumo:
We present results for a variety of Monte Carlo annealing approaches, both classical and quantum, benchmarked against one another for the textbook optimization exercise of a simple one-dimensional double well. In classical (thermal) annealing, the dependence upon the move chosen in a Metropolis scheme is studied and correlated with the spectrum of the associated Markov transition matrix. In quantum annealing, the path integral Monte Carlo approach is found to yield nontrivial sampling difficulties associated with the tunneling between the two wells. The choice of fictitious quantum kinetic energy is also addressed. We find that a "relativistic" kinetic energy form, leading to a higher probability of long real-space jumps, can be considerably more effective than the standard nonrelativistic one.
Resumo:
Dans cette thèse, nous présentons quelques analyses théoriques récentes ainsi que des observations expérimentales de l’effet tunnel quantique macroscopique et des tran- sitions de phase classique-quantique dans le taux d’échappement des systèmes de spins élevés. Nous considérons les systèmes de spin biaxial et ferromagnétiques. Grâce à l’approche de l’intégral de chemin utilisant les états cohérents de spin exprimés dans le système de coordonnées, nous calculons l’interférence des phases quantiques et leur distribution énergétique. Nous présentons une exposition claire de l’effet tunnel dans les systèmes antiferromagnétiques en présence d’un couplage d’échange dimère et d’une anisotropie le long de l’axe de magnétisation aisé. Nous obtenons l’énergie et la fonc- tion d’onde de l’état fondamentale ainsi que le premier état excité pour les systèmes de spins entiers et demi-entiers impairs. Nos résultats sont confirmés par un calcul utilisant la théorie des perturbations à grand ordre et avec la méthode de l’intégral de chemin qui est indépendant du système de coordonnées. Nous présentons aussi une explica- tion claire de la méthode du potentiel effectif, qui nous laisse faire une application d’un système de spin quantique vers un problème de mécanique quantique d’une particule. Nous utilisons cette méthode pour analyser nos modèles, mais avec la contrainte d’un champ magnétique externe ajouté. La méthode nous permet de considérer les transitions classiques-quantique dans le taux d’échappement dans ces systèmes. Nous obtenons le diagramme de phases ainsi que les températures critiques du passage entre les deux régimes. Nous étendons notre analyse à une chaine de spins d’Heisenberg antiferro- magnétique avec une anisotropie le long d’un axe pour N sites, prenant des conditions frontière périodiques. Pour N paire, nous montrons que l’état fondamental est non- dégénéré et donné par la superposition des deux états de Néel. Pour N impair, l’état de Néel contient un soliton, et, car la position du soliton est indéterminée, l’état fondamen- tal est N fois dégénéré. Dans la limite perturbative pour l’interaction d’Heisenberg, les fluctuations quantiques lèvent la dégénérescence et les N états se réorganisent dans une bande. Nous montrons qu’à l’ordre 2s, où s est la valeur de chaque spin dans la théorie des perturbations dégénérées, la bande est formée. L’état fondamental est dégénéré pour s entier, mais deux fois dégénéré pour s un demi-entier impair, comme prévu par le théorème de Kramer
Resumo:
We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation, where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate on the field strength, provides an independent test for macroscopic spin tunneling.
Resumo:
The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper we analyze the double Caldeira-Leggett model: the path integral approach to two interacting dissipative harmonic oscillators. Assuming a general form of the interaction between the oscillators, we consider two different situations: (i) when each oscillator is coupled to its own reservoir, and (ii) when both oscillators are coupled to a common reservoir. After deriving and solving the master equation for each case, we analyze the decoherence process of particular entanglements in the positional space of both oscillators. To analyze the decoherence mechanism we have derived a general decay function, for the off-diagonal peaks of the density matrix, which applies both to common and separate reservoirs. We have also identified the expected interaction between the two dissipative oscillators induced by their common reservoir. Such a reservoir-induced interaction, which gives rise to interesting collective damping effects, such as the emergence of relaxation- and decoherence-free subspaces, is shown to be blurred by the high-temperature regime considered in this study. However, we find that different interactions between the dissipative oscillators, described by rotating or counter-rotating terms, result in different decay rates for the interference terms of the density matrix. (C) 2010 Elsevier B.V. All rights reserved.