990 resultados para partial autocorrelation function
Resumo:
To represent the local orientation and energy of a 1-D image signal, many models of early visual processing employ bandpass quadrature filters, formed by combining the original signal with its Hilbert transform. However, representations capable of estimating an image signal's 2-D phase have been largely ignored. Here, we consider 2-D phase representations using a method based upon the Riesz transform. For spatial images there exist two Riesz transformed signals and one original signal from which orientation, phase and energy may be represented as a vector in 3-D signal space. We show that these image properties may be represented by a Singular Value Decomposition (SVD) of the higher-order derivatives of the original and the Riesz transformed signals. We further show that the expected responses of even and odd symmetric filters from the Riesz transform may be represented by a single signal autocorrelation function, which is beneficial in simplifying Bayesian computations for spatial orientation. Importantly, the Riesz transform allows one to weight linearly across orientation using both symmetric and asymmetric filters to account for some perceptual phase distortions observed in image signals - notably one's perception of edge structure within plaid patterns whose component gratings are either equal or unequal in contrast. Finally, exploiting the benefits that arise from the Riesz definition of local energy as a scalar quantity, we demonstrate the utility of Riesz signal representations in estimating the spatial orientation of second-order image signals. We conclude that the Riesz transform may be employed as a general tool for 2-D visual pattern recognition by its virtue of representing phase, orientation and energy as orthogonal signal quantities.
Resumo:
The effect of having a fixed differential-group delay term in the coarse-step method results in a periodic pattern in the autocorrelation function. We solve this problem by inserting a varying DGD term at each integration step, according to a Gaussian distribution. Simulation results are given to illustrate the phenomenon and provide some evidence, about its statistical nature.
Resumo:
Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems.
Resumo:
The integrability of the nonlinear Schräodinger equation (NLSE) by the inverse scattering transform shown in a seminal work [1] gave an interesting opportunity to treat the corresponding nonlinear channel similar to a linear one by using the nonlinear Fourier transform. Integrability of the NLSE is in the background of the old idea of eigenvalue communications [2] that was resurrected in recent works [3{7]. In [6, 7] the new method for the coherent optical transmission employing the continuous nonlinear spectral data | nonlinear inverse synthesis was introduced. It assumes the modulation and detection of data using directly the continuous part of nonlinear spectrum associated with an integrable transmission channel (the NLSE in the case considered). Although such a transmission method is inherently free from nonlinear impairments, the noisy signal corruptions, arising due to the ampli¯er spontaneous emission, inevitably degrade the optical system performance. We study properties of the noise-corrupted channel model in the nonlinear spectral domain attributed to NLSE. We derive the general stochastic equations governing the signal evolution inside the nonlinear spectral domain and elucidate the properties of the emerging nonlinear spectral noise using well-established methods of perturbation theory based on inverse scattering transform [8]. It is shown that in the presence of small noise the communication channel in the nonlinear domain is the additive Gaussian channel with memory and signal-dependent correlation matrix. We demonstrate that the effective spectral noise acquires colouring", its autocorrelation function becomes slow decaying and non-diagonal as a function of \frequencies", and the noise loses its circular symmetry, becoming elliptically polarized. Then we derive a low bound for the spectral effiency for such a channel. Our main result is that by using the nonlinear spectral techniques one can significantly increase the achievable spectral effiency compared to the currently available methods [9]. REFERENCES 1. Zakharov, V. E. and A. B. Shabat, Sov. Phys. JETP, Vol. 34, 62{69, 1972. 2. Hasegawa, A. and T. Nyu, J. Lightwave Technol., Vol. 11, 395{399, 1993. 3. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4312{4328, 2014. 4. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4329{4345 2014. 5. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4346{4369, 2014. 6. Prilepsky, J. E., S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, Phys. Rev. Lett., Vol. 113, 013901, 2014. 7. Le, S. T., J. E. Prilepsky, and S. K. Turitsyn, Opt. Express, Vol. 22, 26720{26741, 2014. 8. Kaup, D. J. and A. C. Newell, Proc. R. Soc. Lond. A, Vol. 361, 413{446, 1978. 9. Essiambre, R.-J., G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, J. Lightwave Technol., Vol. 28, 662{701, 2010.
Resumo:
Information extraction is a frequent and relevant problem in digital signal processing. In the past few years, different methods have been utilized for the parameterization of signals and the achievement of efficient descriptors. When the signals possess statistical cyclostationary properties, the Cyclic Autocorrelation Function (CAF) and the Spectral Cyclic Density (SCD) can be used to extract second-order cyclostationary information. However, second-order cyclostationary information is poor in nongaussian signals, as the cyclostationary analysis in this case should comprise higher-order statistical information. This paper proposes a new mathematical tool for the higher-order cyclostationary analysis based on the correntropy function. Specifically, the cyclostationary analysis is revisited focusing on the information theory, while the Cyclic Correntropy Function (CCF) and Cyclic Correntropy Spectral Density (CCSD) are also defined. Besides, it is analytically proven that the CCF contains information regarding second- and higher-order cyclostationary moments, being a generalization of the CAF. The performance of the aforementioned new functions in the extraction of higher-order cyclostationary characteristics is analyzed in a wireless communication system where nongaussian noise exists.
Resumo:
A fiber mode-lock laser allows generation of the optical rogue wave (ORW) at different time scales. The criteria for distinguishing between them is a comparison of the event lifetime with the main characteristic time of the system. The characteristic time can be estimated from the decay of an autocorrelation function (AF). Thus, in comparison with AF characteristic time, fast optical rogue wave (FORW) events have duration less than the AF decay time and it appeared due to pulse-pulse interaction and nonlinear pulses dynamics. While slow optical rogue wave (SORW) have a duration much more longer than the decay time of the AF which it papered due to hopping between different attractors. Switching between regimes can be managed by change the artificial birefringence that induced in a laser cavity. For understanding the role playing by the periodical amplification and the resonator, we have performed an unidirectional fiber laser experiments without a saturable absorber. This laser experiment allowed to generate of most of the RW patterns which were either observed experimentally or predicted theoretically. In this way, we have observed the generation of an FORW along with SORW under similar conditions. Most of the patterns were found to be mutually exclusive which means that only one RW mechanism was realized in each regime of generation.
Resumo:
Cognitive radio (CR) was developed for utilizing the spectrum bands efficiently. Spectrum sensing and awareness represent main tasks of a CR, providing the possibility of exploiting the unused bands. In this thesis, we investigate the detection and classification of Long Term Evolution (LTE) single carrier-frequency division multiple access (SC-FDMA) signals, which are used in uplink LTE, with applications to cognitive radio. We explore the second-order cyclostationarity of the LTE SC-FDMA signals, and apply results obtained for the cyclic autocorrelation function to signal detection and classification (in other words, to spectrum sensing and awareness). The proposed detection and classification algorithms provide a very good performance under various channel conditions, with a short observation time and at low signal-to-noise ratios, with reduced complexity. The validity of the proposed algorithms is verified using signals generated and acquired by laboratory instrumentation, and the experimental results show a good match with computer simulation results.
Resumo:
Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum transport through nanoscale conductors. They provide additional information to the mean current on charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of many current theoretical studies. We report on low-temperature shot noise measurements of electronic transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart from addressing noise in archetypical strongly correlated system of prime interest, discloses generic quantum dynamical mechanism occurring at interacting resonant Fermi edges.
Resumo:
Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38(-6)(+7))%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69-(+11)(13))%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A presente dissertação visa uma aplicação de séries temporais, na modelação do índice financeiro FTSE100. Com base na série de retornos, foram estudadas a estacionaridade através do teste Phillips-Perron, a normalidade pelo Teste Jarque-Bera, a independência analisada pela função de autocorrelação e pelo teste de Ljung-Box, e utilizados modelos GARCH, com a finalidade de modelar e prever a variância condicional (volatilidade) da série financeira em estudo. As séries temporais financeiras apresentam características peculiares, revelando períodos mais voláteis do que outros. Esses períodos encontram-se distribuídos em clusters, sugerindo um grau de dependência no tempo. Atendendo à presença de tais grupos de volatilidade (não linearidade), torna-se necessário o recurso a modelos heterocedásticos condicionais, isto é, modelos que consideram que a variância condicional de uma série temporal não é constante e dependente do tempo. Face à grande variabilidade das séries temporais financeiras ao longo do tempo, os modelos ARCH (Engle, 1982) e a sua generalização GARCH (Bollerslev, 1986) revelam-se os mais adequados para o estudo da volatilidade. Em particular, estes modelos não lineares apresentam uma variância condicional aleatória, sendo possível, através do seu estudo, estimar e prever a volatilidade futura da série. Por fim, é apresentado o estudo empírico que se baseia numa proposta de modelação e previsão de um conjunto de dados reais do índice financeiro FTSE100.
Resumo:
Méthodologie: Modèle de régression quantile de variable instrumentale pour données de Panel utilisant la fonction de production partielle
Resumo:
Patients with heart failure who have undergone partial left ventriculotomy improve resting left ventricular systolic function, but have limited functional capacity. We studied systolic and diastolic left ventricular function at rest and during submaximal exercise in patients with previous partial left ventriculotomy and in patients with heart failure who had not been operated, matched for maximal and submaximal exercise capacity. Nine patients with heart failure previously submitted to partial left ventriculotomy were compared with 9 patients with heart failure who had not been operated. All patients performed a cardiopulmonary exercise test with measurement of peak oxygen uptake and anaerobic threshold. Radionuclide left ventriculography was performed to analyze ejection fraction and peak filling rate at rest and during exercise at the intensity corresponding to the anaerobic threshold. Groups presented similar exercise capacity evaluated by peak oxygen uptake and at anaerobic threshold. Maximal heart rate was lower in the partial ventriculotomy group compared to the heart failure group (119 ± 20 vs 149 ± 21 bpm; P < 0.05). Ejection fraction at rest was higher in the partial ventriculotomy group as compared to the heart failure group (41 ± 12 vs 32 ± 9%; P < 0.0125); however, ejection fraction increased from rest to anaerobic threshold only in the heart failure group (partial ventriculotomy = 44 ± 17%; P = non-significant vs rest; heart failure = 39 ± 11%; P < 0.0125 vs rest; P < 0.0125 vs change in the partial ventriculotomy group). Peak filling rate was similar at rest and increased similarly in both groups at the anaerobic threshold intensity (partial ventriculotomy = 2.28 ± 0.55 EDV/s; heart failure = 2.52 ± 1.07 EDV/s; P < 0.0125; P > 0.05 vs change in partial ventriculotomy group). The abnormal responses demonstrated here may contribute to the limited exercise capacity of patients with partial left ventriculotomy despite the improvement in resting left ventricular systolic function.
Resumo:
Modern age samples from various depositional environments were examined for signal resetting. For 19 modern aeolian/beach samples all De values obtained were View the MathML source, with ∼70% having View the MathML source. For 21 fluvial/colluvial samples, all De values were View the MathML source with ∼80% being View the MathML source. De as a function of illumination (OSL measurement) time (De(t)) plots were examined for all samples. Based on previous laboratory experiments, increases in De(t) were expected for partially reset samples, and constant De(t) for fully reset samples. All aeolian samples, both modern age and additional ‘young’ samples (<1000 years), showed constant (flat) De(t) while all modern, non-zero De, fluvial/colluvial samples showed increasing De(t). ‘Replacement plots’, where a regenerated signal is substituted for the natural, yielded constant (flat) De(t). These findings support strongly the use of De(t) as a method of identifying incomplete resetting in fluvial samples. Potential complicating factors, such as illumination (bleaching) spectrum, thermal instability and component composition are discussed and a series of internal checks on the applicability of the De(t) for each individual aliquot/grain level are outlined.
Resumo:
Tooth replacement in the maxillary anterior region is especially difficult when the loss includes significant amounts of the residual ridge and the soft tissue. Several techniques are available, such as dental implants or fixed partial denture, and bone and gingival grafts or gingival prostheses, respectively. This article showed a clinical case of an elderly who was treated with a collarless metal-ceramic fixed partial denture and acrylic removable gingival prosthesis to recover the esthetics in the maxillary anterior region. The association of a metal-ceramic fixed denture and gingival prosthesis was an excellent alternative in cases when surgical procedures are contraindicated. © 2012 Japan Prosthodontic Society.