882 resultados para parallel processing systems
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The cost of spatial join processing can be very high because of the large sizes of spatial objects and the computation-intensive spatial operations. While parallel processing seems a natural solution to this problem, it is not clear how spatial data can be partitioned for this purpose. Various spatial data partitioning methods are examined in this paper. A framework combining the data-partitioning techniques used by most parallel join algorithms in relational databases and the filter-and-refine strategy for spatial operation processing is proposed for parallel spatial join processing. Object duplication caused by multi-assignment in spatial data partitioning can result in extra CPU cost as well as extra communication cost. We find that the key to overcome this problem is to preserve spatial locality in task decomposition. We show in this paper that a near-optimal speedup can be achieved for parallel spatial join processing using our new algorithms.
Resumo:
This paper proposes a wireless EEG acquisition platform based on Open Multimedia Architecture Platform (OMAP) embedded system. A high-impedance active dry electrode was tested for improving the scalp- electrode interface. It was used the sigma-delta ADS1298 analog-to-digital converter, and developed a “kernelspace” character driver to manage the communications between the converter unit and the OMAP’s ARM core. The acquired EEG signal data is processed by a “userspace” application, which accesses the driver’s memory, saves the data to a SD-card and transmits them through a wireless TCP/IP-socket to a PC. The electrodes were tested through the alpha wave replacement phenomenon. The experimental results presented the expected alpha rhythm (8-13 Hz) reactiveness to the eyes opening task. The driver spends about 725 μs to acquire and store the data samples. The application takes about 244 μs to get the data from the driver and 1.4 ms to save it in the SD-card. A WiFi throughput of 12.8Mbps was measured which results in a transmission time of 5 ms for 512 kb of data. The embedded system consumes about 200 mAh when wireless off and 400 mAh when it is on. The system exhibits a reliable performance to record EEG signals and transmit them wirelessly. Besides the microcontroller-based architectures, the proposed platform demonstrates that powerful ARM processors running embedded operating systems can be programmed with real-time constrains at the kernel level in order to control hardware, while maintaining their parallel processing abilities in high level software applications.
Resumo:
Single processor architectures are unable to provide the required performance of high performance embedded systems. Parallel processing based on general-purpose processors can achieve these performances with a considerable increase of required resources. However, in many cases, simplified optimized parallel cores can be used instead of general-purpose processors achieving better performance at lower resource utilization. In this paper, we propose a configurable many-core architecture to serve as a co-processor for high-performance embedded computing on Field-Programmable Gate Arrays. The architecture consists of an array of configurable simple cores with support for floating-point operations interconnected with a configurable interconnection network. For each core it is possible to configure the size of the internal memory, the supported operations and number of interfacing ports. The architecture was tested in a ZYNQ-7020 FPGA in the execution of several parallel algorithms. The results show that the proposed many-core architecture achieves better performance than that achieved with a parallel generalpurpose processor and that up to 32 floating-point cores can be implemented in a ZYNQ-7020 SoC FPGA.
Resumo:
"Series Title: IFIP - The International Federation for Information Processing, ISSN 1868-4238"
Resumo:
Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.
Resumo:
Classical Pavlovian fear conditioning to painful stimuli has provided the generally accepted view of a core system centered in the central amygdala to organize fear responses. Ethologically based models using other sources of threat likely to be expected in a natural environment, such as predators or aggressive dominant conspecifics, have challenged this concept of a unitary core circuit for fear processing. We discuss here what the ethologically based models have told us about the neural systems organizing fear responses. We explored the concept that parallel paths process different classes of threats, and that these different paths influence distinct regions in the periaqueductal gray - a critical element for the organization of all kinds of fear responses. Despite this parallel processing of different kinds of threats, we have discussed an interesting emerging view that common cortical-hippocampal-amygdalar paths seem to be engaged in fear conditioning to painful stimuli, to predators and, perhaps, to aggressive dominant conspecifics as well. Overall, the aim of this review is to bring into focus a more global and comprehensive view of the systems organizing fear responses.
Resumo:
The process of developing software that takes advantage of multiple processors is commonly referred to as parallel programming. For various reasons, this process is much harder than the sequential case. For decades, parallel programming has been a problem for a small niche only: engineers working on parallelizing mostly numerical applications in High Performance Computing. This has changed with the advent of multi-core processors in mainstream computer architectures. Parallel programming in our days becomes a problem for a much larger group of developers. The main objective of this thesis was to find ways to make parallel programming easier for them. Different aims were identified in order to reach the objective: research the state of the art of parallel programming today, improve the education of software developers about the topic, and provide programmers with powerful abstractions to make their work easier. To reach these aims, several key steps were taken. To start with, a survey was conducted among parallel programmers to find out about the state of the art. More than 250 people participated, yielding results about the parallel programming systems and languages in use, as well as about common problems with these systems. Furthermore, a study was conducted in university classes on parallel programming. It resulted in a list of frequently made mistakes that were analyzed and used to create a programmers' checklist to avoid them in the future. For programmers' education, an online resource was setup to collect experiences and knowledge in the field of parallel programming - called the Parawiki. Another key step in this direction was the creation of the Thinking Parallel weblog, where more than 50.000 readers to date have read essays on the topic. For the third aim (powerful abstractions), it was decided to concentrate on one parallel programming system: OpenMP. Its ease of use and high level of abstraction were the most important reasons for this decision. Two different research directions were pursued. The first one resulted in a parallel library called AthenaMP. It contains so-called generic components, derived from design patterns for parallel programming. These include functionality to enhance the locks provided by OpenMP, to perform operations on large amounts of data (data-parallel programming), and to enable the implementation of irregular algorithms using task pools. AthenaMP itself serves a triple role: the components are well-documented and can be used directly in programs, it enables developers to study the source code and learn from it, and it is possible for compiler writers to use it as a testing ground for their OpenMP compilers. The second research direction was targeted at changing the OpenMP specification to make the system more powerful. The main contributions here were a proposal to enable thread-cancellation and a proposal to avoid busy waiting. Both were implemented in a research compiler, shown to be useful in example applications, and proposed to the OpenMP Language Committee.
Resumo:
It has been previously demonstrated that extensive activation in the dorsolateral temporal lobes associated with masking a speech target with a speech masker, consistent with the hypothesis that competition for central auditory processes is an important factor in informational masking. Here, masking from speech and two additional maskers derived from the original speech were investigated. One of these is spectrally rotated speech, which is unintelligible and has a similar (inverted) spectrotemporal profile to speech. The authors also controlled for the possibility of “glimpsing” of the target signal during modulated masking sounds by using speech-modulated noise as a masker in a baseline condition. Functional imaging results reveal that masking speech with speech leads to bilateral superior temporal gyrus (STG) activation relative to a speech-in-noise baseline, while masking speech with spectrally rotated speech leads solely to right STG activation relative to the baseline. This result is discussed in terms of hemispheric asymmetries for speech perception, and interpreted as showing that masking effects can arise through two parallel neural systems, in the left and right temporal lobes. This has implications for the competition for resources caused by speech and rotated speech maskers, and may illuminate some of the mechanisms involved in informational masking.
Resumo:
One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.
Resumo:
It has been previously demonstrated that extensive activation in the dorsolateral temporal lobes associated with masking a speech target with a speech masker, consistent with the hypothesis that competition for central auditory processes is an important factor in informational masking. Here, masking from speech and two additional maskers derived from the original speech were investigated. One of these is spectrally rotated speech, which is unintelligible and has a similar (inverted) spectrotemporal profile to speech. The authors also controlled for the possibility of "glimpsing" of the target signal during modulated masking sounds by using speech-modulated noise as a masker in a baseline condition. Functional imaging results reveal that masking speech with speech leads to bilateral superior temporal gyrus (STG) activation relative to a speech-in-noise baseline, while masking speech with spectrally rotated speech leads solely to right STG activation relative to the baseline. This result is discussed in terms of hemispheric asymmetries for speech perception, and interpreted as showing that masking effects can arise through two parallel neural systems, in the left and right temporal lobes. This has implications for the competition for resources caused by speech and rotated speech maskers, and may illuminate some of the mechanisms involved in informational masking.
Resumo:
This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.
Resumo:
A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.
Resumo:
Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element
Resumo:
The web services (WS) technology provides a comprehensive solution for representing, discovering, and invoking services in a wide variety of environments, including Service Oriented Architectures (SOA) and grid computing systems. At the core of WS technology lie a number of XML-based standards, such as the Simple Object Access Protocol (SOAP), that have successfully ensured WS extensibility, transparency, and interoperability. Nonetheless, there is an increasing demand to enhance WS performance, which is severely impaired by XML's verbosity. SOAP communications produce considerable network traffic, making them unfit for distributed, loosely coupled, and heterogeneous computing environments such as the open Internet. Also, they introduce higher latency and processing delays than other technologies, like Java RMI and CORBA. WS research has recently focused on SOAP performance enhancement. Many approaches build on the observation that SOAP message exchange usually involves highly similar messages (those created by the same implementation usually have the same structure, and those sent from a server to multiple clients tend to show similarities in structure and content). Similarity evaluation and differential encoding have thus emerged as SOAP performance enhancement techniques. The main idea is to identify the common parts of SOAP messages, to be processed only once, avoiding a large amount of overhead. Other approaches investigate nontraditional processor architectures, including micro-and macrolevel parallel processing solutions, so as to further increase the processing rates of SOAP/XML software toolkits. This survey paper provides a concise, yet comprehensive review of the research efforts aimed at SOAP performance enhancement. A unified view of the problem is provided, covering almost every phase of SOAP processing, ranging over message parsing, serialization, deserialization, compression, multicasting, security evaluation, and data/instruction-level processing.