998 resultados para pH-sensitivity
Resumo:
The fabrication and characterization of a fibre optic pH sensor based on evanescent wave absorption is presented. The unclad portion of a multi-mode optical fibre is coated with a pH sensitive dye, which is immobilized by the sol–gel route. The sensitivity of the device has been found to increase when multiple sol–gel coatings are used as the sensing region. The dynamic range and the temporal response of the sensor are investigated for two different dyes, namely bromocresol purple and bromocresol green. The performance of the device is evaluated in terms of the results obtained during actual measurements.
Resumo:
We describe the assembly of layer-by-layer films based on the poly(propylene imine) dendrimer (PPID) generation 3 and nickel tetrasulfonated phthalocyanine (NiTsPc) for application as chemically sensitive membranes in sepal alive extended-gate field effect transistor (SEGFET) pH sensors PPID/NiTsPc films wet e adsorbed on quartz, glass. indium tin oxide. or gold (Au)-covered glass substrates Multilayer formation was monitored via UV-vis absorption upon following the increment in the Q-band intensity (615 nm) of NiTsPc The nanostructured membranes were very stable in a pH range of 4-10 and displayed a good sensitivity toward H(+), ca 30 mV/pH for PPID/N(1)TsPc films deposited on Au-covered substrates For films deposited on ITO, the sensitivity was ca 52 4 mV/pH. close to the expected theoretical value for ton-sensitive membranes. The use of chemically stable PPID/NiTsPc films as gate membranes in SEGFETs, as introduced here, may represent an alternative for the fabrication of nanostructured, porous platforms for enzyme immobilization to be used in enzymatic biosensors.
Resumo:
The possibility to compress analyte bands at the beginning of CE runs has many advantages. Analytes at low concentration can be analyzed with high signal-to-noise ratios by using the so-called sample stacking methods. Moreover, sample injections with very narrow initial band widths (small initial standard deviations) are sometimes useful, especially if high resolutions among the bands are required in the shortest run time. In the present work, a method of sample stacking is proposed and demonstrated. It is based on BGEs with high thermal sensitive pHs (high dpH/dT) and analytes with low dpK(a)/dT. High thermal sensitivity means that the working pK(a) of the BGE has a high dpK(a)/dT in modulus. For instance, Tris and Ethanolamine have dpH/dT = -0.028/degrees C and -0.029/degrees C, respectively, whereas carboxylic acids have low dpK(a)/dT values, i.e. in the -0.002/degrees C to+0.002/degrees C range. The action of cooling and heating sections along the capillary during the runs affects also the local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band compression is theoretically calculated using a simple model. Finally, this stacking method was demonstrated for amino acids derivatized with naphthalene-2,3-dicarboxaldehyde and fluorescamine using a temperature difference of 70 degrees C between two neighbor sections and Tris as separation buffer. In this case, the BGE has a high pH thermal coefficient whereas the carboxylic groups of the analytes have low pK(a) thermal coefficients. The application of these dynamic thermal gradients increased peak height by a factor of two (and decreased the standard deviations of peaks by a factor of two) of aspartic acid and glutamic acid derivatized with naphthalene-2,3-dicarboxaldehyde and serine derivatized with fluorescamine. The effect of thermal compression of bands was not observed when runs were accomplished using phosphate buffer at pH 7 (negative control). Phosphate has a low dpH/dT in this pH range, similar to the dK(a)/dT of analytes. It is shown that vertical bar dK(a)/dT-dpH/dT vertical bar >> 0 is one determinant factor to have significant stacking produced by dynamic thermal junctions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Candida albicans is present in the oral cavity and in the whole digestive tract of humans and other animals, being frequently related to endodontic treatment failure. The present study determined the incidence of C. albicans in the oral cavity and the susceptibility of isolates to different pH values and saturated calcium hydroxide aqueous solution at pH 12.5. Sixty-five patients attending the Endodontic Clinic at the Sagrado Coração University participated in the study. The collected samples were cultivated in selective media for C. albicans and the isolates were tested in terms of resistance to both alkaline pH and saturated aqueous solution of calcium hydroxide. In relation to time variables, yeast viability was assessed by the Sabouraud's agar culture and fluorescein diacetate and ethidium bromide fluorescent staining method. Results from the different pHs and experimental times, including those from different techniques measuring fungal viability, were compared using the chi-square and Fisher's exact tests (α=0.05). The yeasts became completely inviable after 48 h of contact with the calcium hydroxide solution. On the other hand, when exposed to the alkaline culture broth, the yeasts were found to be viable at pHs 9.5 and 10.5 for up to 7 days. In conclusion, C. albicans can only be completely inhibited by direct contact with saturated calcium hydroxide aqueous solution after 48 h of exposure.
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents an innovative integration of sensing and nano-scaled fluidic actuation in the combination of pH sensitive optical dye immobilization with the electro-osmotic phenomena in polar solvents like water for flow-through pH measurements. These flow-through measurements are performed in a flow-through sensing device (FTSD) configuration that is designed and fabricated at MTU. A relatively novel and interesting material, through-wafer mesoporous silica substrates with pore diameters of 20 -200 nm and pore depths of 500 µm are fabricated and implemented for electro-osmotic pumping and flow-through fluorescence sensing for the first time. Performance characteristics of macroporous silicon (> 500 µm) implemented for electro-osmotic pumping include, a very large flow effciency of 19.8 µLmin-1V-1 cm-2 and maximum pressure effciency of 86.6 Pa/V in comparison to mesoporous silica membranes with 2.8 µLmin-1V-1cm-2 flow effciency and a 92 Pa/V pressure effciency. The electrical current (I) of the EOP system for 60 V applied voltage utilizing macroporous silicon membranes is 1.02 x 10-6A with a power consumption of 61.74 x 10-6 watts. Optical measurements on mesoporous silica are performed spectroscopically from 300 nm to 1000 nm using ellipsometry, which includes, angularly resolved transmission and angularly resolved reflection measurements that extend into the infrared regime. Refractive index (n) values for oxidized and un-oxidized mesoporous silicon sample at 1000 nm are found to be 1.36 and 1.66. Fluorescence results and characterization confirm the successful pH measurement from ratiometric techniques. The sensitivity measured for fluorescein in buffer solution is 0.51 a.u./pH compared to sensitivity of ~ 0.2 a.u./pH in the case of fluorescein in porous silica template. Porous silica membranes are efficient templates for immobilization of optical dyes and represent a promising method to increase sensitivity for small variations in chemical properties. The FTSD represents a device topology suitable for application to long term monitoring of lakes and reservoirs. Unique and important contributions from this work include fabrication of a through-wafer mesoporous silica membrane that has been thoroughly characterized optically using ellipsometry. Mesoporous silica membranes are tested as a porous media in an electro-osmotic pump for generating high pressure capacities due to the nanometer pore sizes of the porous media. Further, dye immobilized mesoporous silica membranes along with macroporous silicon substrates are implemented for continuous pH measurements using fluorescence changes in a flow-through sensing device configuration. This novel integration and demonstration is completely based on silicon and implemented for the first time and can lead to miniaturized flow-through sensing systems based on MEMS technologies.
Resumo:
INTRODUCTION: Voluntary muscle activity, including swallowing, decreases during the night. The association between nocturnal awakenings and swallowing activity is under-researched with limited information on the frequency of swallows during awake and asleep periods. AIM: The aim of this study was to assess nocturnal swallowing activity and identify a cut-off predicting awake and asleep periods. METHODS: Patients undergoing impedance-pH monitoring as part of GERD work-up were asked to wear a wrist activity detecting device (Actigraph(®)) at night. Swallowing activity was quantified by analysing impedance changes in the proximal esophagus. Awake and asleep periods were determined using a validated scoring system (Sadeh algorithm). Receiver operating characteristics (ROC) analyses were performed to determine sensitivity, specificity and accuracy of swallowing frequency to identify awake and asleep periods. RESULTS: Data from 76 patients (28 male, 48 female; mean age 56 ± 15 years) were included in the analysis. The ROC analysis found that 0.33 sw/min (i.e. one swallow every 3 min) had the optimal sensitivity (78 %) and specificity (76 %) to differentiate awake from asleep periods. A swallowing frequency of 0.25 sw/min (i.e. one swallow every 4 min) was 93 % sensitive and 57 % specific to identify awake periods. A swallowing frequency of 1 sw/min was 20 % sensitive but 96 % specific in identifying awake periods. Impedance-pH monitoring detects differences in swallowing activity during awake and asleep periods. Swallowing frequency noticed during ambulatory impedance-pH monitoring can predict the state of consciousness during nocturnal periods
Resumo:
Variability in pH is a common occurrence in many aquatic environments, due to physical, chemical and biological processes. In coastal waters, lagoons, estuaries and inland waters, pH can change very rapidly (within seconds or hours) in addition to daily and seasonal changes. At the same time, progressive ocean acidification caused by anthropogenic CO2 emissions is superimposed on these spatial and temporal pH changes. Photosynthetic organisms are therefore unavoidably subject to significant pH variations at the cell surface. Whether this will affect their response to long-term ocean acidification is still unknown, nor is it known whether the short-term sensitivity to pH change is affected by the pCO2 to which the cells are acclimated. We posed the latter open question as our experimental hypothesis: Does acclimation to seawater acidification affect the response of phytoplankton to acute pH variations? The diatom Skeletonema costatum, commonly found in coastal and estuarine waters where short-term acute changes in pH frequently occur, was selected to test the hypothesis. Diatoms were grown at both 390 (pH 8.2, low CO2; LC) and 1000 (pH 7.9, high CO2; HC) µatm CO2 for at least 20 generations, and photosynthetic responses to short-term and acute changes in pH (between 8.2 and 7.6) were investigated. The effective quantum yield of LC-grown cells decreased by ca. 70% only when exposed to pH 7.6; this was not observed when exposed to pH 7.9 or 8.2. HC-grown cells did not show significant responses in any pH treatment. Non-photochemical quenching showed opposite trends. In general, our results indicate that while LC-grown cells are rather sensitive to acidification, HC-grown cells are relatively unresponsive in terms of photochemical performance.
Resumo:
The Arctic Ocean is a bellwether for ocean acidification, yet few direct Arctic studies have been carried out and limited observations exist, especially in winter. We present unique under-ice physicochemical data showing the persistence of a mid water column area of high CO2 and low pH through late winter, Zooplankton data demonstrating that the dominant copepod species are distributed across these different physicochemical conditions, and empirical data demonstrating that these copepods show sensitivity to pCO2 that parallels the range of natural pCO2 they experience through their daily vertical migration behavior. Our data, collected as part of the Catlin Arctic Survey, provide unique insight into the link between environmental variability, behavior, and an organism's physiological tolerance to CO2 in key Arctic biota.
Resumo:
Effects of ocean acidification on Emiliania huxleyi strain RCC 1216 (calcifying, diploid life-cycle stage) and RCC 1217 (non-calcifying, haploid life-cycle stage) were investigated by measuring growth, elemental composition, and production rates under different pCO2 levels (380 and 950 µatm). In these differently acclimated cells, the photosynthetic carbon source was assessed by a (14)C disequilibrium assay, conducted over a range of ecologically relevant pH values (7.9-8.7). In agreement with previous studies, we observed decreased calcification and stimulated biomass production in diploid cells under high pCO2, but no CO2-dependent changes in biomass production for haploid cells. In both life-cycle stages, the relative contributions of CO2 and HCO3 (-) uptake depended strongly on the assay pH. At pH values =< 8.1, cells preferentially used CO2 (>= 90 % CO2), whereas at pH values >= 8.3, cells progressively increased the fraction of HCO3 (-) uptake (~45 % CO2 at pH 8.7 in diploid cells; ~55 % CO2 at pH 8.5 in haploid cells). In contrast to the short-term effect of the assay pH, the pCO2 acclimation history had no significant effect on the carbon uptake behavior. A numerical sensitivity study confirmed that the pH-modification in the (14)C disequilibrium method yields reliable results, provided that model parameters (e.g., pH, temperature) are kept within typical measurement uncertainties. Our results demonstrate a high plasticity of E. huxleyi to rapidly adjust carbon acquisition to the external carbon supply and/or pH, and provide an explanation for the paradoxical observation of high CO2 sensitivity despite the apparently high HCO3 (-) usage seen in previous studies.
Resumo:
This study investigated the impact of photon flux and elevated CO2 concentrations on growth and photosynthetic electron transport on the marine diatom Chaetoceros muelleri and looked for evidence for the presence of a CO2-concentrating mechanism (CCM). pH drift experiments clearly showed that C. muelleri has the capacity to use bicarbonate to acquire inorganic carbon through one or multiple CCMs. The final pH achieved in unbuffered cultures was not changed by light intensity, even under very low photon flux, implying a low energy demand of bicarbonate use via a CCM. In short-term pH drift experiments, only treatment with the carbonic anhydrase inhibitor ethoxyzolamide (EZ) slowed down the rise in pH considerably. EZ was also the only inhibitor that altered the final pH attained, although marginally. In growth experiments, CO2 availability was manipulated by changing the pH in closed flasks at a fixed dissolved inorganic carbon (DIC) concentration. Low-light-treated samples showed lower growth rates in elevated CO2conditions. No CO2 effect was recorded under high light exposure. The maximal photosynthetic capacity, however, increased with CO2 concentration in saturating, but not in subsaturating, light intensities. Growth and photosynthetic capacity therefore responded in opposite ways to increasing CO2 availability. The capacity to photoacclimate to high and low photon flux appeared not to be affected by CO2treatments. However, photoacclimation was restricted to growth photon fluxes between 30 and 300 µmol photons m-2 s-1. The light saturation points for photosynthetic electron transport and for growth coincided at 100 µmol photons m-2 s-1. Below 100 µmol photons m-2 s-1 the light saturation point for photosynthesis was higher than the growth photon flux (i.e. photosynthesis was not light saturated under growth conditions), whereas at higher growth photon flux, photosynthesis was saturated below growth light levels.
Resumo:
We used a controlled CO2 perturbation experiment to test hypotheses about changes in diversity, composition and structure of soft-bottom intertidal macrobenthic assemblages, under realistic and locally relevant scenarios of seawater acidification. Patches of undisturbed sediment were collected from 2 types of intertidal sedimentary habitat in the Ria Formosa coastal lagoon (South Portugal) and exposed to 2 levels of seawater acidification (pH reduced by 0.3 and 0.6 units) and 1 unmanipulated (control) level. After 75 d the assemblages differed significantly between the 2 types of sediment and between field controls and the ex situ treatments, but not among the 3 pH levels tested. The naturally high values of total alkalinity buffered seawater from the changes imposed on carbonate chemistry and may have contributed to offsetting acidification at the local scale. Observed differences on biota were strongly related to the organic matter content and grain-size of the sediments, particularly to the fractions of medium and coarse sand. Soft-bottom intertidal macrofauna was significantly affected by the stress of being held in an artificial environment, but not by CO2-induced seawater acidification. Given the previously observed variations in the sensitivities of marine organisms to seawater acidification, direct extrapolations of the present findings to different regions or other types of assemblages do not seem advisable. However, the contribution of ex situ studies to the assessment of ecosystem-level responses to environmental disturbances could generally be improved by incorporating adequate field controls in the experimental design.
Resumo:
In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.