123 resultados para p27
Resumo:
Chez plusieurs espèces, les neurones auditifs sensibles à la durée de la stimulation sont présents au niveau des collicules inférieurs. Toutefois, le décours temporel de leur développement fonctionnel est inconnu. Étant donné que le collicule supérieur est l’un des principaux relais sous-cortical impliqué dans l’intégration des stimuli audio-visuels, nous voulons déterminer si le collicule supérieur du rat contient de tels neurones et s’ils sont sensibles et sélectifs à différentes durées de stimulation auditive. De plus, l'originalité de cette étude est de déterminer les étapes de leur maturation fonctionnelle. Des enregistrements neuronaux unitaires et extra-cellulaires sont effectués dans le collicule supérieur de rats juvéniles (P15-P18, P21-P24, P27-P30) et adultes anesthésiés. La sensibilité à la durée est déterminée lors de la présentation de bruits gaussiens (2-10 dB SPL au-dessus du seuil) de durées variables (3-100 ms). Seulement un faible pourcentage des neurones du collicule supérieur est de type passe-bande (3-9% des neurones parmi les ratons et 20% chez les rats adultes). Une différence significative de la distribution entre les différents types de neurones auditifs sensibles à la durée est présente au cours du développement: les neurones de type passe-haut (63-75%) sont présents en majorité chez les groupes juvéniles alors que 43% des neurones sont de type insensible à la durée de la stimulation auditive chez les rats adultes. Ces résultats montrent qu’une population importante de neurones auditifs du collicule supérieur du rat est sensible à la durée des signaux sonores et qu’un développement fonctionnel important survient au cours du premier mois postnatal.
Resumo:
Abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role in the pathogenesis of both atherosclerosis and restenosis. Recent studies suggest that high-dose salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in-vitro and in-vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAIDs) exert similar anti proliferative effects on VSMCs, and do so via a common mechanism of action, remains to be shown. In this study, we demonstrate that the NSAIDs aspirin, sodium salicylate, diclofenac, ibuprofen, indometacin and sulindac induce a dose-dependent inhibition of proliferation in rat A10 VSMCs in the absence of significant cytotoxicity. Flow cytometric analyses showed that exposure of A10 cells to diclofenac, indometacin, ibuprofen and sulindac, in the presence of the mitotic inhibitor, nocodazole, led to a significant G0/G1 arrest. In contrast, the salicylates failed to induce a significant G1 arrest since flow cytometry profiles were not significantly different from control cells. Cyclin A levels were elevated, and hyperphosphorylated p107 was present at significant levels, in salicylate-treated A10 cells, consistent with a post-G1/S block, whereas cyclin A levels were low, and hypophosphorylated p107 was the dominant form, in cells treated with other NSAIDs consistent with a G1 arrest. The ubiquitously expressed cyclin-dependent kinase (CDK) inhibitors, p21 and p27, were increased in all NSAID-treated cells. Our results suggest that diclofenac, indometacin, ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase, whereas the growth inhibitory effect of salicylates probably affects the late S and/or G2/M phases. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit in the treatment of certain vasculoproliferative disorders.
Resumo:
The precise role of cell cycle-dependent molecules in controlling the switch from cardiac myocyte hyperplasia to hypertrophy remains to be determined. We report that loss of p27(KIP1) in the mouse results in a significant increase in heart size and in the total number of cardiac myocytes. In comparison to p27(KIP1)+/+ myocytes, the percentage of neonatal p27(KIP1)-/- myocytes in S phase was increased significantly, concomitant with a significant decrease in the percentage of G(0)/G(1) cells. The expressions of proliferating cell nuclear antigen, G(1)/S and G(2)/M phase-acting cyclins, and cyclin-dependent kinases (CDKs) were upregulated significantly in ventricular tissue obtained from early neonatal p27(KIP1)-/- mice, concomitant with a substantial decrease in the expressions of G(1) phase-acting cyclins and CDKs. Furthermore, mRNA expressions of the embryonic genes atrial natriuretic factor and alpha-skeletal actin were detectable at significant levels in neonatal and adult p27(KIP1)-/- mouse hearts but were undetectable in p27(KIP1)+/+ hearts. In addition, loss of p27(KIP1) was not compensated for by the upregulation of other CDK inhibitors. Thus, the loss of p27(KIP1) results in prolonged proliferation of the mouse cardiac myocyte and perturbation of myocyte hypertrophy.
Resumo:
Objective Myocardial repair following injury in mammals is restricted such that damaged areas are replaced by scar tissue, impairing cardiac function. MRL mice exhibit exceptional regenerative healing in an ear punch wound model. Some myocardial repair with restoration of heart function has also been reported following cryoinjury. Increased cardiomyocyte proliferation and a foetal liver stem cell population were implicated. We investigated molecular mechanisms facilitating myocardial repair in MRL mice to identify potential therapeutic targets in non-regenerative species. Methods Expressions of specific cell-cycle regulators that might account for regeneration (CDKs 1, 2, 4 and 6; cyclins A, E, D1 and B1; p21, p27 and E2F5) were compared by immunoblotting in MRL and control C57BL/6 ventricles during development. Flow cytometry was used to investigate stem cell populations in livers from foetal mice, and infarct sizes were compared in coronary artery-ligated and sham-treated MRL and C57BL/6 adult mice. Key findings No differences in the expressions of cell cycle regulators were observed between the two strains. Expressions of CD34+Sca1+ckit-, CD34+Sca1+ckit+ and CD34+Sca1-ckit+ increased in livers from C57BL/6 vs MRL mice. No differences were observed in infarct sizes, levels of fibrosis, Ki67 staining or cardiac function between MRL and C57BL/6 mice. Conclusions No intrinsic differences were observed in cell cycle control molecules or stem cell populations between MRL and control C57BL mouse hearts. Pathophysiologically relevant ischaemic injury is not repaired more efficiently in MRL myocardium, questioning the use of the MRL mouse as a reliable model for cardiac regeneration in response to pathophysiologically relevant forms of injury.
Resumo:
Ogias D, de Andrade Sa ER, Kasai A, Moisan M, Alvares EP, Gama P. Fasting differentially regulates plasma corticosterone-binding globulin, glucocorticoid receptor, and cell cycle in the gastric mucosa of pups and adult rats. Am J Physiol Gastrointest Liver Physiol 298: G117-G125, 2010. First published October 15, 2009; doi:10.1152/ajpgi.00245.2009.-The nutritional status influences gastric growth, and interestingly, whereas cell proliferation is stimulated by fasting in suckling rats, it is inhibited in adult animals. Corticosterone takes part in the mechanisms that govern development, and its effects are regulated in particular by corticosterone-binding globulin (CBG) and glucocorticoid receptor (GR). To investigate whether corticosterone activity responds to fasting and how possible changes might control gastric epithelial cell cycle, we evaluated different parameters during the progression of fasting in 18- and 40-day-old rats. Food restriction induced higher corticosterone plasma concentration at both ages, but only in pups did CBG binding increase after short-and long-term treatments. Fasting also increased gastric GR at transcriptional and protein levels, but the effect was more pronounced in 40-day-old animals. Moreover, in pups, GR was observed in the cytoplasm, whereas, in adults, it accumulated in the nucleus after the onset of fasting. Heat shock protein (HSP) 70 and HSP 90 were differentially regulated and might contribute to the stability of GR and to the high cytoplasmic levels in pups and elevated shuttling in adult rats. As for gastric epithelial cell cycle, whereas cyclin D1 and p21 increased during fasting in pups, in adults, cyclin E slowly decreased, concomitant with higher p27. In summary, we demonstrated that corticosterone function is differentially regulated by fasting in 18-and 40-day-old rats, and such variation might attenuate any possible suppressive effects during postnatal development. We suggest that this mechanism could ultimately increase cell proliferation and allow regular gastric growth during adverse nutritional conditions.
Resumo:
Objectives: Early weaning (EW) increases proliferation of the gastric epithelium in parallel with higher expression of transforming growth factor alpha and its receptor epidermal growth factor receptor (EGFR). The primary objective of the present study was to examine involvement of EGFR signalling in regulating mucosal cell proliferation during the early weaning period. Materials and methods: Fifteen-day-old rats were split into two groups: suckling (control) and EW, in which pups were separated from the dam. Animals were killed daily until the 18th day, 3 days after onset of treatment. To investigate the role of EGFR in proliferation control, EW pups were injected with AG1478, an EGFR inhibitor; signalling molecules, proliferative indices and cell cycle-related proteins were evaluated. Results: EW increased ERK1/2 and Src phosphorylation at 17 days, but p-Akt levels were unchanged. Moreover, at 17 days, AG1478 administration impaired ERK phosphorylation, whereas p-Src and p-Akt were not altered. AG1478 treatment reduced mitotic and DNA synthesis indices, which were determined on HE-stained and BrdU-labelled sections. Finally, AG1478 injection decreased p21 levels in the gastric mucosa at 17 days, while no changes were detected in p27, cyclin E, CDK2, cyclin D1 and CDK4 concentrations. Conclusions: EGFR is part of the mechanism that regulates cell proliferation in rat gastric mucosa during early weaning. We suggest that such responses might depend on activation of MAPK and/or Src signalling pathways and regulation of p21 levels.
Resumo:
As the content of Transforming Growth Factor-beta (TGF beta) wanes in the milk of lactating rat, an increase in TGF beta is observed in the gastric epithelia concomitant with differentiation of the glands upon weaning. Whereas TGF beta has been shown to inhibit the proliferation of gastrointestinal cells in vitro, its functional significance and mechanisms of action have not been studied in vivo. Therefore, we administered TGF beta 1 (1 ng/g body wt.) to 14-day-old rats in which the gastric epithelium was induced to proliferate by fasting, and determined the involvement of signaling through Smads and the impact on epithelial cell proliferation and apoptosis. After the gavage, we observed the progressive increase of active TGF beta 1 while T beta RII-receptor remained constant in the gastric mucosa. By immunohistochemistry, we showed Smad2/3 increase at 60 min (p < 0.05) and Smad2 phosphorylation/activation and translocation to the nucleus most prominently between 0 and 30 min after treatment (p < 0.05). Importantly, TGF beta 1 inhibited cell proliferation (p < 0.05), which was estimated by BrDU pulse-labeling 12 h after gavage. Lower proliferation was reflected by increased p27(kip1) at 2 h (p < 0.05). Also, TGF beta 1 increased apoptosis as measured by M30 labeling at 60 and 180 min (p < 0.001), and by morphological features at 12 h (p < 0.05). In addition, we observed higher levels of activated caspase 3 (17 kDa) from 0 to 30 min. Altogether, these data indicate a direct effect of TGF beta 1 signaling through Smads on both inhibiting proliferation, through alteration of cycle proteins, and inducing apoptosis of gastric epithelial cells in vivo. Further, the studies suggest a potential role for both milk and tissue-expressed TG beta 1 in gastric growth during postnatal development, (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
To investigate whether the genetics of hypertension modifies renal cell responses in experimental diabetes, we studied the renal cell replication and its regulation by two cyclin-dependent kinase (Cdk) inhibitors, p27(Kip1) and p21(Cip1), in prehypertensive spontaneously hypertensive rats (SUR) and their genetically normotensive counterparts, Wistar Kyoto (WKY) rats, with and without streptozotocin-induced diabetes. In diabetic SIIR, the number of proliferating glomerular (0.6 +/- 0.3 positive cells/50 glomeruli) and tubulointerstitial (2.8 +/- 0.6 positive tubulointerstitial cells/50 grid fields) cells assessed by the bromodeoxyuridine technique was significantly (P = 0.0002) lower than in control SIIR (13.2 +/- 1.7 and 48.6 +/- 9.7, respectively) and control (14.0 +/- 1.8 and 63.9 +/- 10.6) and diabetic (14.3 +/- 3.5 and 66.4 +/- 11.5) WKY rats. Proliferating cell nuclear antigen, another marker of cell proliferation, was significantly reduced in replicating glomerular (P = 0.0002) and tubulointerstitial (P < 0.0001) cells in diabetic SHR. In freshly isolated glomeruli, the level of p27(Kip1) detected by Western blotting was significantly higher In diabetic SIIR than in nondiabetic SHR (1.52 +/- 0.14 vs. 1.00 +/- 0.10% of control, P = 0.014). The expression of p21(Cip1) in isolated glomeruli did not differ among the groups of rats. In conclusion, the response of renal cell replication to diabetes differs markedly between prehypertensive SIIR and their WKY control rats. The decreased glomerular cell proliferation in prehypertensive diabetic SIIR is at least partly mediated by a higher expression of the Cdk inhibitor p27(Kip1).
Resumo:
The objective of the present study was to evaluate different techniques for the detection of Paracoccidioides brasiliensis in soil, e.g., culture, animal inoculation and specific DNA amplification by Nested PCR. We designed species-specific inner primers derived from rDNA regions (ITS, 5.8S gene) and found their sensitivity to be higher than culture and animal inoculation. In addition, the sensitivity of these primers was higher than p27-gene primers developed for detection of P brasiliensis in soil in a previous study. DNA from P brasiliensis was detected in soil artificially seeded with the fungus (positive soil control) and from environmental samples collected in an armadillo burrow.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía