981 resultados para p–n junction
Resumo:
While performing a mission, multiple Unmanned Aerial Vehicles (UAVs) need to avoid each other to prevent collisions among them. In this paper, we design a collision avoidance algorithm to resolve the conflict among UAVs that are on a collision course while flying to heir respective destinations. The collision avoidance algorithm consist of each UAV that is on a collision course reactively executing a maneuver that will, as in `inverse' Proportional Navigation (PN), increase Line of Sight (LOS) rate between them, resulting in a `pulling out' of collision course. The algorithm is tested for high density traffic scenarios as well as for robustness in the presence of noise.
Resumo:
Objectives We have investigated the effects of a multi–species probiotic preparation containing a combination of probiotic bacterial genera that included Bifidobacteria, Lactobacilli and a Streptococcus in a mouse model of high fat diet/obesity induced liver steatosis. Methods Three groups of C57B1/6J mice were fed either a standard chow or a high fat diet for 20 weeks, while a third group was fed a high fat diet for 10 weeks and then concomitantly administered probiotics for a further 10 weeks. Serum, liver and large bowel samples were collected for analysis. Results The expression of the tight junction proteins ZO-1 and ZO-2 was reduced (p < 0.05) in high fat diet fed mice compared to chow fed mice. Probiotic supplementation helped to maintain tight ZO-1 and ZO-2 expression compared with the high fat diet group (p < 0.05), but did not restore ZO-1 or ZO-2 expression compared with chow fed mice. Mice fed a high fat diet ± probiotics had significant steatosis development compared to chow fed mice (p < 0.05); steatosis was less severe in the probiotics group compared to the high fat diet group. Hepatic triglycerides concentration was higher in mice fed a high fat diet ± probiotics compared to the chow group (p < 0.05), and was lower in the probiotics group compared to the high fat diet group (p < 0.05). Compared to chow fed mice, serum glucose and cholesterol concentrations, and the activity of alanine transaminase were higher (p < 0.05), whereas serum triglyceride concentration was lower (p < 0.05) in mice fed a high fat diet ± probiotics. Conclusions Supplementation with a multi-species probiotic formulation helped to maintain tight junction proteins ZO-1 and ZO-2, and reduced hepatic triglyceride concentrations compared with a HFD alone.
Resumo:
A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.
Resumo:
This communication describes the voltage‐current characteristics in the breakdown region of p‐n junctions made on polycrystalline silicon of large grain size. The observed soft breakdown characteristics have been explained by taking into account the effect of curvature of the junction near the grain boundaries.
Resumo:
Wettability gradient surfaces play a significant role in control and manipulation of liquid drops. The present work deals with the analysis of water drops impacting onto the junction line between hydrophobic texture and hydrophilic smooth portions of a dual-textured substrate made using stainless steel material. The hydrophobic textured portion of the substrate comprised of unidirectional parallel groove-like and pillar-like structures of uniform dimensions. A high-speed video camera recorded the spreading and receding dynamics of impacting drops. The drop impact dynamics during the early inertia driven impact regime remains unaffected by the dual-texture feature of the substrate. A larger retraction speed of drop liquid observed on the hydrophobic portion of the substrate during the impact of low velocity drops makes the drop liquid on the higher wettability portion to advance further (secondary drop spreading). The net horizontal drop velocity towards the hydrophilic portion of the dual-textured substrate decreases with increasing drop impact velocity. The available experimental results suggest that the movement of bulk drop liquid away from the impact point during drop impact on the dual-textured substrate is larger for the impact of low inertia drops. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Unsymmetrical diphosphazanes Ph(2)PN(Pr-i)PYY' [YY' = O2C12H8 (L(1)), O2C20H12 (L(2)); Y = Ph and Y' = OC6H4Br-4 (L(3)), OC(6)H(4)Me-4 (L(4)), OC(6)H(3)Me(2)-3,5 (L(5)), N(2)C(3)HMe(2)-3,5 (L(6))] react with cis-[PdCl2(COD)] (COD = cycloocta-1,5-diene) giving the chelate complexes of the type cis-[PdCl2{eta(2)-Ph(2)PN(Pr-i)PYY'}] [YY' = O2C12H8 (1), O2C20H12 (2), Y = Ph and Y' = OC6H4Br-4 (3), OC(6)H(4)Me-4 (4), OC(6)H(3)Me(2)-3,5 (5), N(2)C(3)HMe(2)-3,5 (6)]. The P-N bond in 3 and 5 undergoes a facile cleavage in methanol solution to give cis-[PdCl2{eta(1)Ph(2)P(OMe)}{eta(1)-PhP(NHPri)(Y')}] [Y' = OC6H4Br-4 (7), OC(6)H(3)Me(2)-3,5 (8)]. Reactions of Pd-2(dba)(3) . CHCl3 (dba = dibenzylideneacetone) with the diphosphazanes Ph(2)PN(Pr-i)PPhY' [Y' = OC(6)H(4)Me-4 (L(4)), N(2)C(3)HMe(2)-3,5 (L(6)), N2C3H3 (L(7))] in the presence of MeI yields cis-[PdI2{eta(2)-Ph(2)PN(Pr-i)PPhMe}] (9); the P-O or P-N(pyrazolyl) bond of the starting ligands is cleaved and a p-C(Me) bond is formed. An analogous oxidative addition reaction in the presence of Ph(2)PN(Pr-i)PPh(2) (L(8)) yields cis-[PdI(Me)(eta(2)-L(8))] (10) and cis-[PdI2(eta 2-L(8))] (11). The structures of 8 and 9 have been determined by X-ray diffraction. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Epitaxial LaNiO3 thin films have been grown on SrTiO3 and several other substrates by pulsed laser deposition. The films are observed to be metallic down to 15 K, and the temperature dependence of resistivity is similar to that of bulk LaNiO3. Epitaxial, c-axis oriented YBa2Cu3O7-x films with good superconducting properties have been grown on the LaNiO3 (100) films. I-V characteristics of the YBa2Cu3O7-x-LaNiO3 junction are linear, indicating ohmic contact between them.
Resumo:
During lightning strike to a tall grounded object (TGO), reflections of current waves are known to occur at either ends of the TGO. These reflection modify the channel current and hence, the lightning electromagnetic fields. This study aims to identify the possible contributing factors to reflection at a TGO-channel junction for the current waves ascending on the TGO. Possible sources of reflection identified are corona sheath and discontinuity of resistance and radius. For analyzing the contribution of corona sheath and discontinuity of resistance at the junction, a macroscopic physical model for the return stroke developed in our earlier work is employed. NEC-2D is used for assessing the contribution of abrupt change in radii at a TGO-channel junction. The wire-cage model adopted for the same is validated using laboratory experiments. Detailed investigation revealed the following. The main contributor for reflection at a TGO-channel junction is the difference between TGO and channel core radii. Also, the discontinuity of resistance at a TGO-channel junction can be of some relevance only for the first microsecond regime. Further, corona sheath does not play any significant role in the reflection.
Resumo:
HgCdTe mid wave infrared (MWIR) n(+)/nu/p(+) homo-junction photodiodes with planar architecture are designed, fabricated, and measured at room temperature. An improved analytical I-V model is reported by incorporating trap assisted tunneling and electric field enhanced Shockley-Read-Hall generation recombination process due to dislocations. Tunneling currents are fitted before and after the Auger suppression of carriers with energy level of trap (E-t), trap density (N-t), and the doping concentrations of n(+) and nu regions as fitting parameters. Values of E-t and N-t are determined as 0.79 E-g and similar to 9 x 10(14) cm(-3), respectively, in all cases. Doping concentration of nu region was found to exhibit nonequilibrium depletion from a value of 2 x 10(16) to 4 x 10(15) cm(-3) for n(+) doping of 2 x 10(17) cm(-3). Pronounced negative differential resistance is observed in the homo-junction HgCdTe diodes. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682483]
Resumo:
We study the properties of a line junction which separates the surfaces of two three-dimensional topological insulators. The velocities of the Dirac electrons on the two surfaces may be unequal and may even have opposite signs. For a time-reversal invariant system, we show that the line junction is characterized by an arbitrary parameter alpha which determines the scattering from the junction. If the surface velocities have the same sign, we show that there can be edge states which propagate along the line junction with a velocity and spin orientation which depend on alpha and the ratio of the velocities. Next, we study what happens if the two surfaces are at an angle phi with respect to each other. We study the scattering and differential conductance through the line junction as functions of phi and alpha. We also find that there are edge states which propagate along the line junction with a velocity and spin orientation which depend on phi. Finally, if the surface velocities have opposite signs, we find that the electrons must transmit into the two-dimensional interface separating the two topological insulators.
Resumo:
The temperature dependent current transport properties of nonpolar a-plane (11 2 0) InN/GaN heterostructure Schottky junction were investigated. The barrier height ( b) and ideally factor (η) estimated from the thermionic emission (TE) model were found to be temperature dependent in nature. The conventional Richardson plot of the ln(I s/T 2) versus 1/kT has two regions: the first region (150-300 K) and the second region (350-500 K). The values of Richardson constant (A +) obtained from this plot are found to be lower than the theoretical value of n-type GaN. The variation in the barrier heights was explained by a double Gaussian distribution with mean barrier height values ( b ) of 1.17 and 0.69 eV with standard deviation (� s) of 0.17 and 0.098 V, respectively. The modified Richardson plot in the temperature range 350-500 K gives the Richardson constant which is close to the theoretical value of n-type GaN. Hence, the current mechanism is explained by TE by assuming the Gaussian distribution of barrier height. At low temperature 150-300 K, the absence of temperature dependent tunneling parameters indicates the tunneling assisted current transport mechanism. © 2012 American Institute of Physics.
Resumo:
We study transport across a line junction lying between two orthogonal topological insulator surfaces and a superconductor which can have either s-wave (spin-singlet) or p-wave (spin-triplet) pairing symmetry. The junction can have three time-reversal invariant barriers on three sides. We compute the charge and the spin conductance across such a junction and study their behaviors as a function of the bias voltage applied across the junction and the three parameters used to characterize the barrier. We find that the presence of topological insulators and a superconductor leads to both Dirac- and Schrodinger-like features in charge and spin conductances. We discuss the effect of bound states on the superconducting side of the barrier on the conductance; in particular, we show that for triplet p-wave superconductors, such a junction may be used to determine the spin state of its Cooper pairs. Our study reveals that there is a nonzero spin conductance for some particular spin states of the triplet Cooper pairs; this is an effect of the topological insulators which break the spin rotation symmetry. Finally, we find an unusual satellite peak (in addition to the usual zero bias peak) in the spin conductance for p-wave symmetry of the superconductor order parameter.