964 resultados para optimisation study
Resumo:
We investigate the performance of different variants of a suitably tailored Tabu Search optimisation algorithm on a higher-order design problem. We consider four objective func- tions to describe the performance of a compressor stator row, subject to a number of equality and inequality constraints. The same design problem has been previously in- vestigated through single-, bi- and three-objective optimisation studies. However, in this study we explore the capabilities of enhanced variants of our Multi-objective Tabu Search (MOTS) optimisation algorithm in the context of detailed 3D aerodynamic shape design. It is shown that with these enhancements to the local search of the MOTS algorithm we can achieve a rapid exploration of complicated design spaces, but there is a trade-off be- tween speed and the quality of the trade-off surface found. Rapidly explored design spaces reveal the extremes of the objective functions, but the compromise optimum areas are not very well explored. However, there are ways to adapt the behaviour of the optimiser and maintain both a very efficient rate of progress towards the global optimum Pareto front and a healthy number of design configurations lying on the trade-off surface and exploring the compromise optimum regions. These compromise solutions almost always represent the best qualitative balance between the objectives under consideration. Such enhancements to the effectiveness of design space exploration make engineering design optimisation with multiple objectives and robustness criteria ever more practicable and attractive for modern advanced engineering design. Finally, new research questions are addressed that highlight the trade-offs between intelligence in optimisation algorithms and acquisition of qualita- tive information through computational engineering design processes that reveal patterns and relations between design parameters and objective functions, but also speed versus optimum quality. © 2012 AIAA.
Resumo:
The most common approach to decision making in multi-objective optimisation with metaheuristics is a posteriori preference articulation. Increased model complexity and a gradual increase of optimisation problems with three or more objectives have revived an interest in progressively interactive decision making, where a human decision maker interacts with the algorithm at regular intervals. This paper presents an interactive approach to multi-objective particle swarm optimisation (MOPSO) using a novel technique to preference articulation based on decision space interaction and visual preference articulation. The approach is tested on a 2D aerofoil design case study and comparisons are drawn to non-interactive MOPSO. © 2013 IEEE.
Resumo:
Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - o realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 AIAA.
Resumo:
Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - ε realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 by the authors.
Resumo:
In this PhD study, mathematical modelling and optimisation of granola production has been carried out. Granola is an aggregated food product used in breakfast cereals and cereal bars. It is a baked crispy food product typically incorporating oats, other cereals and nuts bound together with a binder, such as honey, water and oil, to form a structured unit aggregate. In this work, the design and operation of two parallel processes to produce aggregate granola products were incorporated: i) a high shear mixing granulation stage (in a designated granulator) followed by drying/toasting in an oven. ii) a continuous fluidised bed followed by drying/toasting in an oven. In addition, the particle breakage of granola during pneumatic conveying produced by both a high shear granulator (HSG) and fluidised bed granulator (FBG) process were examined. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. It was observed that the least amount of breakage occurred in the straight pipe while the most breakage occurred at 90° bend pipe. Moreover, lower levels of breakage were observed in two 45° bend pipe than the 90° bend vi pipe configuration. In general, increasing the impact angle increases the degree of breakage. Additionally for the granules produced in the HSG, those produced at 300 rpm have the lowest breakage rates while the granules produced at 150 rpm have the highest breakage rates. This effect clearly the importance of shear history (during granule production) on breakage rates during subsequent processing. In terms of the FBG there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. A population balance model was developed to analyse the particle breakage occurring during pneumatic conveying. The population balance equations that govern this breakage process are solved using discretization. The Markov chain method was used for the solution of PBEs for this process. This study found that increasing the air velocity (by increasing the air pressure to the rig), results in increased breakage among granola aggregates. Furthermore, the analysis carried out in this work provides that a greater degree of breakage of granola aggregates occur in line with an increase in bend angle.
Resumo:
This study has considered the optimisation of granola breakfast cereal manufacturing processes by wet granulation and pneumatic conveying. Granola is an aggregated food product used as a breakfast cereal and in cereal bars. Processing of granola involves mixing the dry ingredients (typically oats, nuts, etc.) followed by the addition of a binder which can contain honey, water and/or oil. In this work, the design and operation of two parallel wet granulation processes to produce aggregate granola products were incorporated: a) a high shear mixing granulation process followed by drying/toasting in an oven. b) a continuous fluidised bed followed by drying/toasting in an oven. In high shear granulation the influence of process parameters on key granule aggregate quality attributes such as granule size distribution and textural properties of granola were investigated. The experimental results show that the impeller rotational speed is the single most important process parameter which influences granola physical and textural properties. After that binder addition rate and wet massing time also show significant impacts on granule properties. Increasing the impeller speed and wet massing time increases the median granule size while also presenting a positive correlation with density. The combination of high impeller speed and low binder addition rate resulted in granules with the highest levels of hardness and crispness. In the fluidised bed granulation process the effect of nozzle air pressure and binder spray rate on key aggregate quality attributes were studied. The experimental results show that a decrease in nozzle air pressure leads to larger in mean granule size. The combination of lowest nozzle air pressure and lowest binder spray rate results in granules with the highest levels of hardness and crispness. Overall, the high shear granulation process led to larger, denser, less porous and stronger (less likely to break) aggregates than the fluidised bed process. The study also examined the particle breakage of granola during pneumatic conveying produced by both the high shear granulation and the fluidised bed granulation process. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. Particle breakage increases with applied pressure drop, and a 90° bend pipe results in more attrition for all conveying velocities relative to other pipe geometry. Additionally for the granules produced in the high shear granulator; those produced at the highest impeller speed, while being the largest also have the lowest levels of proportional breakage while smaller granules produced at the lowest impeller speed have the highest levels of breakage. This effect clearly shows the importance of shear history (during granule production) on breakage during subsequent processing. In terms of the fluidised bed granulation, there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. Finally, a simple power law breakage model based on process input parameters was developed for both manufacturing processes. It was found suitable for predicting the breakage of granola breakfast cereal at various applied air velocities using a number of pipe configurations, taking into account shear histories.
Resumo:
This thesis describes the optimisation of chemoenzymatic methods in asymmetric synthesis. Modern synthetic organic chemistry has experienced an enormous growth in biocatalytic methodologies; enzymatic transformations and whole cell bioconversions have become generally accepted synthetic tools for asymmetric synthesis. Biocatalysts are exceptional catalysts, combining broad substrate scope with high regio-, enantio- and chemoselectivities enabling the resolution of organic substrates with superb efficiency and selectivity. In this study three biocatalytic applications in enantioselective synthesis were explored and perhaps the most significant outcome of this work is the excellent enantioselectivity achieved through optimisation of reaction conditions improving the synthetic utility of the biotransformations. In the first chapter a summary of literature discussing the stereochemical control of baker’s yeast (Saccharomyces Cerevisae) mediated reduction of ketones by the introduction of sulfur moieties is presented, and sets the work of Chapter 2 in context. The focus of the second chapter was the synthesis and biocatalytic resolution of (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone. For the first time the practical limitations of this resolution have been addressed providing synthetically useful quantities of enantiopure synthons for application in the total synthesis of both enantiomers of 4-methyloctanoic acid, the aggregation pheromone of the rhinoceros beetles of the genus Oryctes. The unique aspect of this enantioselective synthesis was the overall regio- and enantioselective introduction of the methyl group to the octanoic acid chain. This work is part of an ongoing research programme in our group focussed on baker’s yeast mediated kinetic resolution of 2-keto sulfones. The third chapter describes hydrolase-catalysed kinetic resolutions leading to a series of 3-aryl alkanoic acids. Hydrolysis of the ethyl esters with a series of hydrolases was undertaken to identify biocatalysts that yield the corresponding acids in highly enantioenriched form. Contrary to literature reports where a complete disappearance of efficiency and, accordingly enantioselection, was described upon kinetic resolution of sterically demanding 3-arylalkanoic acids, the highest reported enantiopurities of these acids was achieved (up to >98% ee) in this study through optimisation of reaction conditions. Steric and electronic effects on the efficiency and enantioselectivity of the biocatalytic transformation were also explored. Furthermore, a novel approach to determine the absolute stereochemistry of the enantiopure 3-aryl alkanoic acids was investigated through combination of co-crystallisation and X-ray diffraction linked with chiral HPLC analysis. The fourth chapter was focused on the development of a biocatalytic protocol for the asymmetric Henry reaction. Efficient kinetic resolution in hydrolase-mediated transesterification of cis- and trans- β-nitrocyclohexanol derivatives was achieved. Combination of a base-catalysed intramolecular Henry reaction coupled with the hydrolase-mediated kinetic resolution with the view to selective acetylation of a single stereoisomer was investigated. While dynamic kinetic resolution in the intramolecular Henry was not achieved, significant progress in each of the individual elements was made and significantly the feasibility of this process has been demonstrated. The final chapter contains the full experimental details, including spectroscopic and analytical data of all compounds synthesised in this project, while details of chiral HPLC analysis are included in the appendix. The data for the crystal structures are contained in the attached CD.
Resumo:
In the European Union under the Common Agricultural Policy (CAP) milk production was restricted by milk quotas since 1984. However, due to recent changes in the Common Agricultural Policy (CAP), milk quotas will be abolished by 2015. Therefore, the European dairy sector will soon face an opportunity, for the first time in a generation, to expand. Numerous studies have shown that milk production in Ireland will increase significantly post quotas (Laepple and Hennessy (2010), Donnellan and Hennessy (2007) and Lips and Reider (2005)). The research in this thesis explored milk transport and dairy product processing in the Irish dairy processing sector in the context of milk quota removal and expansion by 2020. In this study a national milk transport model was developed for the Irish dairy industry, the model was used to examine different efficiency factors in milk transport and to estimate milk transport costs post milk quota abolition. Secondly, the impact of different milk supply profiles on milk transport costs was investigated using the milk transport model. Current processing capacity in Ireland was compared against future supply, it was concluded that additional milk processing capacity would not be sufficient to process the additional milk. Thirdly, the milk transport model was used to identify the least cost locations (based on transport costs) to process the additional milk supply in 2020. Finally, an optimisation model was developed to identify the optimum configuration for the Irish dairy processing sector in 2020 taking cognisance of increasing transport costs and decreasing processing costs.
Resumo:
A common problem faced by fire safety engineers in the field of evacuation analysis concerns the optimal design of an arbitrarily complex structure in order to minimise evacuation times. How does the engineer determine the best solution? In this study we introduce the concept of numerical optimisation techniques to address this problem. The study makes user of the buildingEXODUS evacuation model coupled with classical optimisation theory including Design of Experiments (DoE) and Response Surface Models (RSM). We demonstrate the technique using a relatively simple problem of determining the optimal location for a single exit in a square room.
Resumo:
Up until now, aircraft surface smoothness requirements have been aerodynamically driven with tighter manufacturing tolerance to minimize drag, that is, the tighter the tolerance, the higher is the assembly cost in the process of manufacture. In the current status of commercial transport aircraft operation, it can be seen that the unit cost contributes to the aircraft direct operating cost considerably more than the contribution made by the cost of block fuel consumed for the mission profile. The need for a customer-driven design strategy to reduce direct operating cost by reducing aircraft cost through manufacturing tolerance relaxation at the wetted surface without unduly penalizing parasite drag is investigated. To investigate this, a preliminary study has been conducted at 11 key manufacturing features on the surface assembly of an isolated nacelle. In spite of differences in parts design and manufacture, the investigated areas associated with the assembly of nacelles are typical of generic patterns in the assembly of other components of aircraft. The study is to be followed up by similar studies extended to lifting surfaces and fuselage
Resumo:
PURPOSE:
Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries.
METHODS:
A range of microneedle geometries was engineered into silicone micromoulds, and their physicochemical features were subsequently characterised.
RESULTS:
Microneedles micromoulded from 20% w/w aqueous blends of the mucoadhesive copolymer Gantrez® AN-139 were surprisingly found to possess superior physical strength than those produced from commonly used pharma polymers. Gantrez® AN-139 microneedles, 600 µm and 900 µm in height, penetrated neonatal porcine skin with low application forces (>0.03 N per microneedle). When theophylline was loaded into 600 µm microneedles, 83% of the incorporated drug was delivered across neonatal porcine skin over 24 h. Optical coherence tomography (OCT) showed that drug-free 600 µm Gantrez® AN-139 microneedles punctured the stratum corneum barrier of human skin in vivo and extended approximately 460 µm into the skin. However, the entirety of the microneedle lengths was not inserted.
CONCLUSION:
In this study, we have shown that a novel laser engineering method can be used in micromoulding of polymeric microneedle arrays. We are currently carrying out an extensive OCT-informed study investigating the influence of microneedle array geometry on skin penetration depth, with a view to enhanced transdermal drug delivery from optimised laser-engineered Gantrez® AN-139 microneedles.
Resumo:
Left ventricular pressure overload in response to aortic banding is an invaluable model for studying progression of cardiac hypertrophy and transition to heart failure. Traditional aortic banding has recently been superceded by minimally invasive transverse aortic banding (MTAB) which does not require ventilation so is less technically challenging. Although the MTAB procedure is superior, few laboratories have documented success and minimal information on the model is available. The aim of this study was to optimise conditions for MTAB and to characterise the development and progression of cardiac hypertrophy. Isofluorane proved the most suitable anaesthetic for MTAB surgery in mice and one week after surgery MTAB animals showed significant increases in systolic blood pressure (110±6 v's 78±3(mmHg), MTAB v's sham, n=7,p
Resumo:
Among the key challenges present in the modelling and optimisation of composite structures against impact is the computational expense involved in setting up accurate simulations of the impact event and then performing the iterations required to optimise the designs. It is of more interest to find good designs given the limitations of the resources and time available rather than the best possible design. In this paper, low cost but sufficiently accurate finite element (FE) models were generated in LS Dyna for several experimentally characterised materials by semi-automating the modelling process and using existing material models. These models were then used by an optimisation algorithm to generate new hybrid offspring, leading to minimum weight and/or cost designs from a selection of isotropic metals, polymers and orthotropic fibre-reinforced laminates that countered a specified impact threat. Experimental validation of the optimal designs thus identified was then successfully carried out using a single stage gas gun. With sufficient computational hardware, the techniques developed in this pilot study can further utilise fine meshes, equations of state and sophisticated material models, so that optimal hybrid systems can be identified from a wide range of materials, designs and threats.
Resumo:
his paper proposes an optimisation-based method to calculate the critical slip (speed) of dynamic stability and critical clearing time (CCT) of a self-excited induction generator (SEIG). A simple case study using the Matlab/Simulink environment has been included to exemplify the optimisation method. Relationships between terminal voltage, critical slip and reactance of transmission line, CCT and inertial constant have been determined, based on which analysis of impact on relaying setting has been further conducted for another simulation case.
Resumo:
Explanations for the causes of famine and food insecurity often reside at a high level of aggregation or abstraction. Popular models within famine studies have often emphasised the role of prime movers such as population stress, or the political-economic structure of access channels, as key determinants of food security. Explanation typically resides at the macro level, obscuring the presence of substantial within-country differences in the manner in which such stressors operate. This study offers an alternative approach to analyse the uneven nature of food security, drawing on the Great Irish famine of 1845–1852. Ireland is often viewed as a classical case of Malthusian stress, whereby population outstripped food supply under a pre-famine demographic regime of expanded fertility. Many have also pointed to Ireland's integration with capitalist markets through its colonial relationship with the British state, and country-wide system of landlordism, as key determinants of local agricultural activity. Such models are misguided, ignoring both substantial complexities in regional demography, and the continuity of non-capitalistic, communal modes of land management long into the nineteenth century. Drawing on resilience ecology and complexity theory, this paper subjects a set of aggregate data on pre-famine Ireland to an optimisation clustering procedure, in order to discern the potential presence of distinctive social–ecological regimes. Based on measures of demography, social structure, geography, and land tenure, this typology reveals substantial internal variation in regional social–ecological structure, and vastly differing levels of distress during the peak famine months. This exercise calls into question the validity of accounts which emphasise uniformity of structure, by revealing a variety of regional regimes, which profoundly mediated local conditions of food security. Future research should therefore consider the potential presence of internal variations in resilience and risk exposure, rather than seeking to characterise cases based on singular macro-dynamics and stressors alone.