998 resultados para null cell
Resumo:
A critical role for Tie1, an orphan endothelial receptor, in blood vessel morphogenesis has emerged from mutant mouse studies. Moreover, it was recently demonstrated that certain angiopoietin (Ang) family members can activate Tie1. We report here that Ang1 induces Tie1 phosphorylation in endothelial cells. Tie1 phosphorylation was, however, Tie2 dependent because 1) Ang1 failed to induce Tie1 phosphorylation when Tie2 was down-regulated in endothelial cells; 2) Tie1 phosphorylation was induced in the absence of Ang1 by either a constitutively active form of Tie2 or a Tie2 agonistic antibody; 3) in HEK 293 cells Ang1 phosphorylated a form of Tie1 without kinase activity when coexpressed with Tie2, and Ang1 failed to phosphorylate Tie1 when coexpressed with kinase-defective Tie2. Ang1-mediated AKT and 42/44MAPK phosphorylation is predominantly Tie2 mediated, and Tie1 down-regulates this pathway. Finally, based on a battery of in vitro and in vivo data, we show that a main role for Tie1 is to modulate blood vessel morphogenesis by virtue of its ability to down-regulate Tie2-driven signaling and endothelial survival. Our new observations help to explain why Tie1 null embryos have increased capillary densities in several organ systems. The experiments also constitute a paradigm for how endothelial integrity is fine-tuned by the interplay between closely related receptors by a single growth factor.
Resumo:
Crosstalk between elements of the sinusoidal vasculature, platelets and hepatic parenchymal cells influences regenerative responses to liver injury and/or resection. Such paracrine interactions include hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), IL-6 and small molecules such as serotonin and nucleotides. CD39 (nucleoside triphosphate diphosphohydrolase-1) is the dominant vascular ectonucleotidase expressed on the luminal surface of endothelial cells and modulates extracellular nucleotide signaling. We have previously shown that integrity of P2-receptors, as maintained by CD39, is required for angiogenesis in Matrigel plugs in vivo and that there is synergism between nucleotide P2-receptor- and growth factor-mediated cell proliferation in vitro. We have now explored effects of CD39 on liver regeneration and vascular endothelial growth factor responses in a standard small animal model of partial hepatectomy. The expression of CD39 on liver sinusoidal endothelial cells (LSEC) is substantially boosted during liver regeneration. This transcriptional upregulation precedes maximal sinusoidal endothelial cell proliferation, noted at day 5-8 in C57BL6 wild type mice. In matched mutant mice null for CD39 (n=14), overall survival is decreased to 71% by day 10. Increased lethality occurs as a consequence of extensive LSEC apoptosis, decreased endothelial proliferation and failure of angiogenesis leading to hepatic infarcts and regenerative failure in mutant mice. This aberrant vascular remodeling is associated with biochemical liver injury, elevated serum levels of VEGF (113.9 vs. 65.5pg/ml, p=0.013), and decreased circulating HGF (0.89 vs. 1.43 ng/ml, p=0.001) in mice null for CD39. In agreement with these observations, wild type LSEC but not CD39 null cultures upregulate HGF expression and secretion in response to exogenous VEGF in vitro. CD39 null LSEC cultures show poor proliferation responses and heightened levels of apoptosis when contrasted to wild type LSEC where agonists of P2Y receptors augment cell proliferation in the presence of growth factors. These observations are associated with features of P2Y-desensitization, normal levels of the receptor tyrosine kinase VEGFR-1 (Flt-1) and decreased expression of VEGFR-2 (FLK/KDR) in CD39 null LSEC cultures. We provide evidence that CD39 and extracellular nucleotides impact upon growth factor responses and tyrosine receptor kinases during LSEC proliferation. We propose that CD39 expression by LSEC might co-ordinate angiogenesis-independent liver protection by facilitating VEGF-induced paracrine release of HGF to promote vascular remodeling in liver regeneration.
Resumo:
The mammalian Cutl1 gene codes for the CCAAT displacement protein (CDP), which has been implicated as a transcriptional repressor in diverse processes such as terminal differentiation, cell cycle progression, and the control of nuclear matrix attachment regions. To investigate the in vivo function of Cutl1, we have replaced the C-terminal Cut repeat 3 and homeodomain exons with an in-frame lacZ gene by targeted mutagenesis in the mouse. The CDP-lacZ fusion protein is retained in the cytoplasm and fails to repress gene transcription, indicating that the Cutl1(lacZ) allele corresponds to a null mutation. Cutl1 mutant mice on inbred genetic backgrounds are born at Mendelian frequency, but die shortly after birth because of retarded differentiation of the lung epithelia, which indicates an essential role of CDP in lung maturation. A less pronounced delay in lung development allows Cutl1 mutant mice on an outbred background to survive beyond birth. These mice are growth-retarded and develop an abnormal pelage because of disrupted hair follicle morphogenesis. The inner root sheath (IRS) is reduced, and the transcription of Sonic hedgehog and IRS-specific genes is deregulated in Cutl1 mutant hair follicles, consistent with the specific expression of Cutl1 in the progenitors and cell lineages of the IRS. These data implicate CDP in cell-lineage specification during hair follicle morphogenesis, which resembles the role of the related Cut protein in specifying cell fates during Drosophila development.
Resumo:
Despite much attention, the function of oligosaccharide chains of glycoproteins remains largely unknown. Our understanding of oligosaccharide function in vivo has been limited to the use of reagents and targeted mutations that eliminate entire oligosaccharide chains. However, most, if not all biological functions for oligosaccharides have been attributed to specific terminal sequences on these oligosaccharides, yet there have been few studies to examine the consequences of modifying terminal oligosaccharide structures in vivo. To address this issue, mice were created bearing a targeted mutation in $\beta$1,4-galactosyltransferase, an enzyme responsible for elaboration of many of the proposed biologically-active carbohydrate epitopes. Most galactosyltransferase-null mice died within the first few weeks after birth and were characterized by stunted growth, thin skin, sparse hair, and dehydration. In addition, the adrenal cortices were poorly stratified and spermatogenesis was delayed. The few surviving adults had puffy skin (myxedema), difficulty delivering pups at birth (dystocia), and failed to lactate (agalactosis). All of these defects are consistant with endocrine insufficiency, which was confirmed by markedly decreased levels of serum thyroxine. The anterior pituitary gland appeared functionally delayed in newborn mutant mice, since the constituent cells were quiescent and nonsecretory, unlike that of control littermates. However, the anterior pituitary acquired a normal secretory phenotype during neonatal development, although it remained abnormally small and its glycoprotein hormones were devoid of $\beta$1,4-galactosyl residues. These results support in vitro studies suggesting that incomplete glycosylation of pituitary hormones leads to the creation of hormone antagonists that down regulate subsequent endocrine function producing polyglandular endocrine insufficiency. More surprisingly, the fact that some mice survive this neonatal period indicates the presence of a previously unrecognized compensatory pathway for glycoprotein hormone glycosylation and/or action.^ In addition to its well-studied biosynthetic function in the Golgi complex, a GalTase isoform is also expressed on the sperm surface where it functions as a gamete receptor during fertilization by binding to its oligosaccharide ligand on the egg coat glycoprotein, ZP3. Aggregation of GalTase by multivalent ZP3 oligosaccharides activates a G-protein cascade leading to the acrosome reaction. Although GalTase-null males are fertile, the mutant sperm bind less ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either zona pellucida glycoproteins or to anti-GalTase anti-serum, as do wild-type sperm. However, mutant and wild-type sperm undergo the acrosome reaction normally in response to calcium ionophore which bypasses the requirement for ZP3 binding. Interestingly, the phenotype of the GalTase-null sperm is reciprocal to that of sperm that overexpress surface GalTAse and which bind more ZP3 leading to precocious acrosome reactions. These results confirm that GalTase functions as at least one of the sperm receptors for ZP3, and that GalTase participates in the ZP3-induced signal transduction pathway during zona pellucida-induced acrosome reactions. ^
Resumo:
The pregnane X receptor (PXR) has been postulated to play a role in the metabolism of α-tocopherol owing to the up-regulation of hepatic cytochrome P450 (P450) 3A in human cell lines and murine models after α-tocopherol treatment. However, in vivo studies confirming the role of PXR in α-tocopherol metabolism in humans presents significant difficulties and has not been performed. PXR-humanized (hPXR), wild-type, and Pxr-null mouse models were used to determine whether α-tocopherol metabolism is influenced by species-specific differences in PXR function in vivo. No significant difference in the concentration of the major α-tocopherol metabolites was observed among the hPXR, wild-type, and Pxr-null mice through mass spectrometry-based metabolomics. Gene expression analysis revealed significantly increased expression of Cyp3a11 as well as several other P450s only in wild-type mice, suggesting species-specificity for α-tocopherol activation of PXR. Luciferase reporter assay confirmed activation of mouse PXR by α-tocopherol. Analysis of the Cyp2c family of genes revealed increased expression of Cyp2c29, Cyp2c37, and Cyp2c55 in wild-type, hPXR, and Pxr-null mice, which suggests PXR-independent induction of Cyp2c gene expression. This study revealed that α-tocopherol is a partial agonist of PXR and that PXR is necessary for Cyp3a induction by α-tocopherol. The implications of a novel role for α-tocopherol in Cyp2c gene regulation are also discussed.
Resumo:
The extravasation of CD4(+) effector/memory T cells (TEM cells) across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis (MS). Endothelial ICAM-1 and ICAM-2 are essential for CD4(+) TEM cell crawling on the BBB prior to diapedesis. Here, we investigated the influence of cell surface levels of endothelial ICAM-1 in determining the cellular route of CD4(+) TEM -cell diapedesis across cytokine treated primary mouse BBB endothelial cells under physiological flow. Inflammatory conditions, inducing high levels of endothelial ICAM-1, promoted rapid initiation of transcellular diapedesis of CD4(+) T cells across the BBB, while intermediate levels of endothelial ICAM-1 favored paracellular CD4(+) T-cell diapedesis. Importantly, the route of T-cell diapedesis across the BBB was independent of loss of BBB barrier properties. Unexpectedly, a low number of CD4(+) TEM cells was found to cross the inflamed BBB in the absence of endothelial ICAM-1 and ICAM-2 via an obviously alternatively regulated transcellular pathway. In vivo, this translated to the development of ameliorated EAE in ICAM-1(null) //ICAM-2(-/-) C57BL/6J mice. Taken together, our study demonstrates that cell surface levels of endothelial ICAM-1 rather than the inflammatory stimulus or BBB integrity influence the pathway of T-cell diapedesis across the BBB.
Resumo:
Chromatin condensation within the nucleus of developing spermatids involves replacement of histones by transition proteins, which are in turn replaced by protamines. The importance of transition proteins in the complex process of spermiogenesis has, to date, been only speculative. This study sought to investigate the extent to which transition proteins are essential or have redundant functions by characterizing sperm produced in mice expressing all combinations of Tnp-null alleles. Results from breeding trials of 8 weeks duration revealed that, on average, wildtype males produced about 14 offspring whereas TP2 and TP1 single-knockout males produced about 8 and 1 offspring, respectively, demonstrating their subfertility. Genotypes with less than two Tnp wildtype alleles, as well as double-knockout mutants, were completely infertile. Sperm from males with impaired fertility had poor progressive motility, heterogeneous chromatin condensation, incompletely processed protamine 2 and head and tail abnormalities. Generally, as the number of Tnp-null alleles increased so did the severity of abnormalities. However, specific morphological abnormalities were associated with the absence of an individual TP. Studies which sought to identify possible root causes for abnormalities in thiol-rich sperm structures revealed no differences in thiol content or sulfhydryl oxidation status within the nucleus but nuclei and tails from single-knockout mutants were severely disrupted following thiol reduction. Binding of fluorescent dyes to DNA was normal in sperm recovered from caput but abnormal in cauda epididymal sperm from TP1 knockouts and infertile double mutants. Injection of cauda epididymal sperm from double knockouts into oocytes produced very few offspring; however, after injection with testicular sperm, the efficiency was no different from wildtype. These results suggest DNA structural alterations or degradation during epididymal transport of sperm resulting in a diminished capacity of the paternal DNA of these sperm to produce offspring. The overall importance of transition proteins for normal chromatin condensation and production of fertile sperm has been demonstrated. Furthermore, identification of specific morphological abnormalities associated with the absence of an individual transition protein provides new evidence that the proteins are not completely redundant and each fulfills some unique function. ^
Resumo:
The p53 transcription factor is a tumor suppressor and a master regulator of apoptosis and the cell cycle in response to cell stress. In some advanced tumors, such as prostate cancers, the loss of p53 correlates with an increase in the occurrence of metastases. In addition, several groups have suggested that p53 status correlates with changes in cell migration and cell morphology associated with a migratory phenotype. Others have identified several genes with roles in cell migration that are directly transcriptionally regulated by p53. Even so, modulation of cell migration is not widely recognized as a p53 stress response. ^ In an effort to identify novel p53 target genes and expand our knowledge of the p53 transcriptional response, we performed Affymetrix gene expression analysis in p53-null PC3 prostate cancer cells following infection with a control virus or adenoviral construct expressing wild-type p53. Over 300 genes that had not been previously recognized as p53 target genes were identified. Of these genes, 224 were upregulated and 111 were downregulated (p<0.05). Functional over-representation analysis identified cell migration as a significantly over-represented biological function of p53. Further analysis identified two genes that are critical for the control of cell migration as potential p53 targets. One, hyaluronan mediated motility receptor (HMMR), has recently been shown to be a p53 target important for regulation of the cell cycle. Here, we show that HMMR is downregulated by p53 in several cell lines, and HMMR's regulation is dependent on the presence of the cdk inhibitor, p21, and histone deactelyase activity. The other gene, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), itself a tumor suppressor, is shown here, for the first time, as a p53 direct target by ChIP analysis. We next determined the effect of p53 activation on cell migration and found that p53 significantly slows the rate of cell migration in Boyden chamber migration assays and digital videomicroscopy wound healing studies. Further, our studies established the specific roles of CEACAM1 and HMMR in cell migration and determine that loss of CEACAM1 and overexpression of HMMR independently contribute to increased cell migration. Taken together, these studies provide a direct mechanistic link between p53 to the regulatory control of specific target genes that mediate cell adhesion and migration. ^
Resumo:
The tumor suppressor p53 is mutated in over 50% of human sporadic tumors originating from diverse tissues. p53 responds to DNA damage and cell stress by activating the transcription of a variety of target genes, the protein products of which then initiate either growth arrest or apoptosis. ^ A p53 target with a particularly intriguing function is the oncogene MDM2. MDM2 functions, in part, by binding to and inhibiting p53's activity. Overexpression of MDM2, by gene amplification, has been found in 30% of human sarcomas harboring a wild type p53, indicating that an increase in MDM2 levels is sufficient for p53 inactivation. Mice carrying a homozygous null allele for mdm2 exhibit an early embryonic lethality that is completely rescued in a p53-null background. These data indicate that MDM2's only critical function in early mouse embryogenesis is the negative regulation of p53. ^ The mdmx gene is the first additional member of the mdm2 gene family to be isolated. MDMX, like MDM2, contains a RING-finger domain, ATP binding domain and a p53 binding domain, which retains the ability to bind and inhibit p53 transactivation in vitro. However, mdmx does not appear to be transcriptionally regulated by p53. We have cloned and characterized the murine mdmx genomic locus from a mouse 129 genomic library. The mdmx gene contains 11 exons, spans approximately 37 Kb of DNA, and is located on mouse chromosome 1. The genomic organization of the mdmx gene is identical to that of mdm2 except at the 5′ end of the gene near the p53 responsive element. Northern expression analysis of mdmx transcripts during mouse embryogenesis and in adult tissues revealed constitutive and ubiquitous expression throughout adult tissues and embryonic development. To determine the in vivo function of MDMX, mice carrying a null allele of mdmx have been generated. Mdmx homozygous null mice are early embryonic lethal. Mdmx null mice do not develop beyond 9.5 dpc and can be discerned by gross dissection as early as 7.5 dpc. Utilizing TUNEL and BrdU assays on 7.5 dpc histological sections we have determined that the mutant embryos are dying due to increased levels of growth arrest, but not apoptosis. Surprisingly, Mdmx homozygous null mice are viable in a p53 null background, indicating that MDMX is also very important in the negative regulation of p53. ^
Resumo:
Non-Hodgkin's lymphomas are common tumors of the human immune system, primarily of B cell lineage (NHL-B). Negative growth regulation in the B cell lineage is mediated primarily through the TGF-β/SMAD signaling pathway that regulates a variety of tumor suppressor genes. Ski was originally identified as a transforming oncoprotein, whereas SnoN is an isoform of the Sno protein that shares a large region of homology with Ski. In this study, we show that Ski/SnoN are endogenously over-expressed both in patients' lymphoma cells and NHL-B cell lines. Exogenous TGF-β1 treatment induces down-regulation of Ski and SnoN oncoprotein expression in an NHL-B cell line, implying that Ski and SnoN modulate the TGF-β signaling pathway and are involved in cell growth regulation. Furthermore, we have developed an NHL-B cell line (DB) that has a null mutation in TGF-β receptor type II. In this mutant cell line, Ski/SnoN proteins are not down-regulated in response to TGF-β1 treatment, suggesting that downregulation of Ski and SnoN proteins in NHL-B require an intact functional TGF-β signaling pathway Resting normal B cells do not express Ski until activated by antigens and exogenous cytokines, whereas a low level of SnoN is also present in peripheral blood Go B cells. In contrast, autonomously growing NHL-B cells over-express Ski and SnoN, implying that Ski and SnoN are important cell cycle regulators. To further investigate a possible link between reduction of the Ski protein level and growth inhibition, Ski antisense oligodeoxynucleotides were transfected into NHL-B cells. The Ski protein level was found to decrease to less than 40%, resulting in restoring the effect of TGF-β and leading to cell growth inhibition and G1 cell cycle arrest. Co-immunoprecipitation experiments demonstrated that Ski associates with Smad4 in the nucleus, strongly suggesting that over-expression of the nuclear protein Ski and/or SnoN negatively regulates the TGF-β pathway, possibly by modulating Smad-mediated tumor suppressor gene expression. Together, in NHL-B, the TGF-β/SMAD growth inhibitory pathway is usually intact, but over-expression of the Ski and/or SnoN, which binds to Smad4, abrogates the negative regulatory effects of TGF-β/SMAD in lymphoma cell growth and potentiates the growth potential of neoplastic B cells. ^
Resumo:
Histone acetylation is a central event in transcriptional activation. The importance of this modification in mammalian development is highlighted by knockout studies that revealed loss of the histone acetyltransferases GCN5, p300, or CBP results in embryonic lethality. Furthermore, early embryogenesis is sensitive to the dosage of p300 and CBP since double p300 +/−CBP+/− heterozygotes die in utero, although either single heterozygote survives. PCAF and GCN5 physically interact with p300 and CBP in vitro. To determine whether these two groups of HATs interact functionally in vivo, we created mice lacking one or more allele of p300, GCN5 or PCAF. As expected, we found that mice heterozygous for any one of these null alleles are viable. The majority of GCN5 p300 double heterozygotes also survive to adulthood with no apparent abnormalities. However, a portion of these mice die prior to birth. These embryos are developmentally stunted and exhibit increased apoptosis compared to wild type or single GCN5 or p300 heterozygous littermates at E8.5. Tissue specification is unaffected in these embryos but organ formation is compromised. In contrast, no abnormalities were observed in mice harboring mutations in both PCAF and p300 , emphasizing the specificity of HAT functions in mammalian development. ^ Since GCN5 null embryos die early in embryogenesis because of a marked increase in apoptosis, studies of its function and mechanism in late development and in tissue specific differentiation are precluded. Here, we also report the establishment of a GCN5 null embryonic stem cell line and a conditional floxGCN5 mouse line, which will serve as powerful genetic tools to examine in depth the function of GCN5 in mammalian development and in adult tissues. ^
Resumo:
The essential p21-activated kinase (PAK), Shk1, is a critical component of a Ras/Cdc42/PAK complex required for cell viability, normal cell polarity, proper regulation of cytoskeletal dynamics, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. While cellular functions of PAKs have been described in eukaryotes from yeasts to mammals, the molecular mechanisms of PAK regulation and function are poorly understood. This study has characterized a novel Shk1 inhibitor, Skb15, and, in addition, identified the cell polarity regulator, Tea1, as a potential biological substrate of Shk1 in S. pombe. Skb15 is a highly conserved WD repeat protein that was discovered from a two-hybrid screen for proteins that interact with the catalytic domain of Shk1. Molecular data indicate that Skb15 negatively regulates Shk1 kinase activity in S. pombe cells. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution. ^ Our laboratory has recently demonstrated that Shk1, in addition to regulating actin cytoskeletal organization, is required for proper regulation of microtubule dynamics in S. pombe cells. The Shk1 protein localizes to interphase and mitotic microtubules, the septum-forming region, and cell ends. This pattern of localization overlaps with that of the cell polarity regulator, Tea1, in S. pombe cells. The tea1 gene was identified by Paul Nurse's laboratory from a screen for genes involved in the control of cell morphogenesis in S. pombe. In contrast to wild type S. pombe cells, which are rod shaped, tea1 null cells are often bent and/or branched in shape. The Tea1 protein localizes to the cell ends, like Shk1, and the growing tips of interphase microtubules. Thus, experiments were performed to investigate whether Tea1 interacts with Shk1. The tea1 null mutation strongly suppresses the loss of function of Skb15, an essential inhibitor of Shk1 function. All defects associated with the skb15 mutation, including defects in F-actin organization, septation, spindle elongation, and chromosome segregation, are suppressed by tea1Δ, suggesting that Tea1 may function in these diverse processes. Consistent with a role for Tea1 in cytokinesis, tea1Δ cells have a modest cell separation defect that is greatly exacerbated by a shk1 mutation and, like Shk1, Tea1 localizes to the septation site. Molecular analyses showed that Tea1 phosphorylation is significantly dependent on Shk1 function in vivo and that bacterially expressed Tea1 protein is directly phosphorylated by recombinant Shk1 kinase in vitro. Taken together, these results identify Tea1 as a potential biological substrate of Shk1 in S. pombe. ^ In summary, this study provides new insights into a conserved regulatory mechanism for PAKs, and also begins to uncover the molecular mechanisms by which the Ras/Cdc42/PAK complex regulates the microtubule and actin cytoskeletons and cell growth polarization in fission yeast. ^
Resumo:
In this paper, a numerical study is made of simple bi-periodic binary diffraction gratings for solar cell applications. The gratings consist of hexagonal arrays of elliptical towers and wells etched directly into the solar cell substrate. The gratings are applied to two distinct solar cell technologies: a quantum dot intermediate band solar cell (QD-IBSC) and a crystalline silicon solar cell (SSC). In each case, the expected photocurrent increase due to the presence of the grating is calculated assuming AM1.5D illumination. For each technology, the grating period, well/tower depth and well/tower radii are optimised to maximise the photocurrent. The optimum parameters are presented. Results are presented for QD-IBSCs with a range of quantum dot layers and for SSCs with a range of thicknesses. For the QD-IBSC, it is found that the optimised grating leads to an absorption enhancement above that calculated for an ideally Lambertian scatterer for cells with less than 70 quantum dot layers. In a QD-IBSC with 50 quantum dot layers equipped with the optimum grating, the weak intermediate band to conduction band transition absorbs roughly half the photons in the corresponding sub-range of the AM1.5D spectrum. For the SSC, it is found that the optimised grating leads to an absorption enhancement above that calculated for an ideally Lambertian scatterer for cells with thicknesses of 10 ?m or greater. A 20um thick SSC equipped with the optimised grating leads to an absorption enhancement above that of a 200um thick SSC equipped with a planar back reflector.
Resumo:
An extended 3D distributed model based on distributed circuit units for the simulation of triple‐junction solar cells under realistic conditions for the light distribution has been developed. A special emphasis has been put in the capability of the model to accurately account for current mismatch and chromatic aberration effects. This model has been validated, as shown by the good agreement between experimental and simulation results, for different light spot characteristics including spectral mismatch and irradiance non‐uniformities. This model is then used for the prediction of the performance of a triple‐junction solar cell for a light spot corresponding to a real optical architecture in order to illustrate its suitability in assisting concentrator system analysis and design process.
Resumo:
The work presented here aims to reduce the cost of multijunction solar cell technology by developing ways to manufacture them on cheap substrates such as silicon. In particular, our main objective is the growth of III-V semiconductors on silicon substrates for photovoltaic applications. The goal is to create a GaAsP/Si virtual substrates onto which other III-V cells could be integrated with an interesting efficiency potential. This technology involves several challenges due to the difficulty of growing III-V materials on silicon. In this paper, our first work done aimed at developing such structure is presented. It was focused on the development of phosphorus diffusion models on silicon and on the preparation of an optimal silicon surface to grow on it III-V materials.