839 resultados para novel query detection
Resumo:
This paper presents a novel architecture of vision chip for fast traffic lane detection (FTLD). The architecture consists of a 32*32 SIMD processing element (PE) array processor and a dual-core RISC processor. The PE array processor performs low-level pixel-parallel image processing at high speed and outputs image features for high-level image processing without I/O bottleneck. The dual-core processor carries out high-level image processing. A parallel fast lane detection algorithm for this architecture is developed. The FPGA system with a CMOS image sensor is used to implement the architecture. Experiment results show that the system can perform the fast traffic lane detection at 50fps rate. It is much faster than previous works and has good robustness that can operate in various intensity of light. The novel architecture of vision chip is able to meet the demand of real-time lane departure warning system.
Resumo:
A simultaneous electrochemiluminescence (ECL) and electrochemical (EC) detection scheme for NACE was presented for fast analysis of tertiary amines. Both ECL and EC signals were generated at the same Pt electrode. Triethylamine (TEA), tripropylamine (TPrA), chlorpromazine, promethazine, and dioxopromethazine (DPZ) were selected to validate NACE-ECL/EC dual detection strategy. The linear ranges for TEA and TPrA were 0.01-500 and 0.01-10 mu M with the detection limits of 8.0 and 5.0 nM (S/N=3), respectively. The RSDs (n = 6) of the migration time and the ECL intensity for 1 mu M TEA and 0.5 mu M TPrA were 0.1 and 2.8%, and 0.2 and 1.8% with theoretical plate numbers of 180 000 and 700 000 per meter, respectively. These two analytes could be separated within 92 s and the Pt electrode did not need reactivation during the experiments.
Resumo:
Fluorescent oligonucleotide-stabilized Ag nanoclusters are demonstrated as novel and environmentally-friendly fluorescence probes for the determination of Hg2+ ions with a low detection limit and high selectivity.
Resumo:
A new liquid chromatography electrochemical (LCEC) scheme for glucose sensing has been developed on the basis of a Prussian Blue chemically modified electrode (CME) of novel construction and characterized in terms of various experimental parameters by the flow injection analysis (FIA) technique. Unique hydrodynamic voltammograms were obtained for the first time at the CME in the flow-through amperometric detection of glucose, and subsequently both anodic and cathodic peaks could be expected on monitoring the operating potential in the modest positive or negative region. The unique pH dependence on the CME response towards glucose makes it perfectly compatible with conventional reversed phase liquid chromatography systems. On the basis of these features, practical application in glucose LCEC detection has been effectively performed; a linear response range over three orders of magnitude and a detection limit of subpicomole level were readily obtained. The capability of the established LCEC mode in the direct sensing of urinary glucose has been demonstrated.
Resumo:
Aims: To investigate the species-specific prevalence of vhhP2 among Vibrio harveyi isolates and the applicability of vhhP2 in the specific detection of V. harveyi from crude samples of animal and environmental origins. Methods and Results: A gene (vhhP2) encoding an outer membrane protein of unknown function was identified from a pathogenic V. harveyi isolate. vhhP2 is present in 24 V. harveyi strains isolated from different geographical locations but is absent in 24 strains representing 17 different non-V. harveyi species, including V. parahaemolyticus and V. alginolyticus. A simple polymerase chain reaction method for the identification of V. harveyi was developed based on the conserved sequence of vhhP2. This method was demonstrated to be applicable to the quick detection of V. harveyi from crude animal specimens and environmental samples. The specificity of this method was tested by applying it to the examination of two strains of V. campbellii, which is most closely related to V. harveyi. One of the V. campbellii strains was falsely identified as V. harveyi. Conclusions: vhhP2 is ubiquitously present in the V. harveyi species and is absent in most of the non-V. harveyi species; this feature enables vhhP2 to serve as a genetic marker for the rapid identification of V. harveyi. However, this method can not distinguish some V. campbellii strains from V. harveyi. Significance and Impact of the Study: the significance of our study is the identification of a novel gene of V. harveyi and the development of a simple method for the relatively accurate detection of V. harveyi from animal specimens and environmental samples.
Resumo:
The development of ultra high speed (~20 Gsamples/s) analogue to digital converters (ADCs), and the delayed deployment of 40 Gbit/s transmission due to the economic downturn, has stimulated the investigation of digital signal processing (DSP) techniques for compensation of optical transmission impairments. In the future, DSP will offer an entire suite of tools to compensate for optical impairments and facilitate the use of advanced modulation formats. Chromatic dispersion is a very significant impairment for high speed optical transmission. This thesis investigates a novel electronic method of dispersion compensation which allows for cost-effective accurate detection of the amplitude and phase of the optical field into the radio frequency domain. The first electronic dispersion compensation (EDC) schemes accessed only the amplitude information using square law detection and achieved an increase in transmission distances. This thesis presents a method by using a frequency sensitive filter to estimate the phase of the received optical field and, in conjunction with the amplitude information, the entire field can be digitised using ADCs. This allows DSP technologies to take the next step in optical communications without requiring complex coherent detection. This is of particular of interest in metropolitan area networks. The full-field receiver investigated requires only an additional asymmetrical Mach-Zehnder interferometer and balanced photodiode to achieve a 50% increase in EDC reach compared to amplitude only detection.
Resumo:
UNLABELLED: Amplification of the MET oncogene is associated with poor prognosis, metastatic dissemination, and drug resistance in many malignancies. We developed a method to capture and characterize circulating tumor cells (CTC) expressing c-MET using a ferromagnetic antibody. Immunofluorescence was used to characterize cells for c-MET, DAPI, and pan-CK, excluding CD45(+) leukocytes. The assay was validated using appropriate cell line controls spiked into peripheral blood collected from healthy volunteers (HV). In addition, peripheral blood was analyzed from patients with metastatic gastric, pancreatic, colorectal, bladder, renal, or prostate cancers. CTCs captured by c-MET were enumerated, and DNA FISH for MET amplification was performed. The approach was highly sensitive (80%) for MET-amplified cells, sensitive (40%-80%) for c-MET-overexpressed cells, and specific (100%) for both c-MET-negative cells and in 20 HVs. Of 52 patients with metastatic carcinomas tested, c-MET CTCs were captured in replicate samples from 3 patients [gastric, colorectal, and renal cell carcinoma (RCC)] with 6% prevalence. CTC FISH demonstrated that MET amplification in both gastric and colorectal cancer patients and trisomy 7 with gain of MET gene copies in the RCC patient. The c-MET CTC assay is a rapid, noninvasive, sensitive, and specific method for detecting MET-amplified tumor cells. CTCs with MET amplification can be detected in patients with gastric, colorectal, and renal cancers. IMPLICATIONS: This study developed a novel c-MET CTC assay for detecting c-MET CTCs in patients with MET amplification and warrants further investigation to determine its clinical applicability. Mol Cancer Res; 14(6); 539-47. ©2016 AACR.