644 resultados para nicotinamide adenine dinucleotide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable lipid film was made by casting dipalmitoylphosphatidylcholine (DPPC) and rutin onto the surface of a glassy carbon (GC) electrode. The electrochemical behavior of rutin in the DPPC film was studied. The modified electrode coated with rutin gave quasi-reversible reduction-oxidation peak on cyclic voltammogram in the phosphate buffer (pH 7.4). The peak current did not decrease apparently after stored at 4 degreesC for 8 hours in refrigerator. This model of biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by rutin. Rutin in the film acts as a mediator. The modified electrode shows a great enhancement and the anodic peak potential was reduced by about 220 mV in the oxidation of 5 X 10(-3) mol L-1 NADN compared with that obtained at a bare glassy carbon electrode. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The MitoChip v2.0 resequencing array is an array-based technique allowing for accurate and complete sequencing of the mitochondrial genome. No studies have investigated mitochondrial mutation in salivary gland adenoid cystic carcinomas. METHODOLOGY: The entire mitochondrial genome of 22 salivary gland adenoid cystic carcinomas (ACC) of salivary glands and matched leukocyte DNA was sequenced to determine the frequency and distribution of mitochondrial mutations in ACC tumors. PRINCIPAL FINDINGS: Seventeen of 22 ACCs (77%) carried mitochondrial mutations, ranging in number from 1 to 37 mutations. A disproportionate number of mutations occurred in the D-loop. Twelve of 17 tumors (70.6%) carried mutations resulting in amino acid changes of translated proteins. Nine of 17 tumors (52.9%) with a mutation carried an amino acid changing mutation in the nicotinamide adenine dinucleotide dehydrogenase (NADH) complex. CONCLUSIONS/SIGNIFICANCE: Mitochondrial mutation is frequent in salivary ACCs. The high incidence of amino acid changing mutations implicates alterations in aerobic respiration in ACC carcinogenesis. D-loop mutations are of unclear significance, but may be associated with alterations in transcription or replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1943, the first description of familial idiopathic methemoglobinemia in the United Kingdom was reported in 2 members of one family. Five years later, Quentin Gibson (then of Queen's University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency. Recessive congenital methemoglobinemia (RCM) is caused by a deficiency of reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase. One of the original propositi with the type 1 disorder has now been traced. He was found to be a compound heterozygote harboring 2 previously undescribed mutations in exon 9, a point mutation Gly873Ala predicting a Gly291Asp substitution, and a 3-bp in-frame deletion of codon 255 (GAG), predicting loss of glutamic acid. A brother and a surviving sister are heterozygous; each bears one of the mutations. Thirty-three different mutations have now been recorded for RCM. The original authors' optimism that RCM would provide material for future genetic studies has been amply justified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress plays an important role in the development of cardiac remodeling after myocardial infarction (MI), but the sources of oxidative stress remain unclear. We investigated the role of Nox2-containing reduced nicotinamide-adenine dinucleotide phosphate oxidase in the development of cardiac remodeling after MI. Adult Nox2(-/-) and matched wild-type (WT) mice were subjected to coronary artery ligation and studied 4 weeks later. Infarct size after MI was similar in Nox2(-/-) and WT mice. Nox2(-/-) mice exhibited significantly less left ventricular (LV) cavity dilatation and dysfunction after MI than WT mice (eg, echocardiographic LV end-diastolic volume: 75.7+/-5.8 versus 112.4+/-12.3 microL; ejection fraction: 41.6+/-3.7 versus 32.9+/-3.2%; both P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been carried out to investigate whether the action of triclabendazole (TCBZ) is altered in the presence of a metabolic inhibitor. The flavin monooxygenase system (FMO) was inhibited using methimazole (MTZ) to see whether a TCBZ-resistant isolate could be made more sensitive to TCBZ action. The Oberon TCBZ-resistant and Cullompton TCBZ-sensitive isolates Were used for these experiments. The FMO system was inhibited by a 2-h pre-incubation in methimazole (100 mu M). Flukes were then incubated for I further 22 h in NCTC medium containing either MTZ; MTZ+nicotinamide adenine dinucleotide phosphate (NADPH) (1 nm); MTZ+NADPH+TCBZ (15 mu g/ml); or MTZ+NADPH+triclabendazole sulphoxide (TCBZ.SO) (15 mu g/ml). Morphological changes resulting from drug treatment and following metabolic inhibition were assessed Using scanning electron microscopy'. After treatment with either TCBZ or TCBZ.SO alone, there was greater surface disruption to the triclabendazole-susceptible than -resistant isolate. However, co-incubation with MTZ and TCBZ/TCBZ.SO lead to more severe surface changes to the TCBZ-resistant isolate than with each drug oil its own; this was not seen for the TCBZ-susceptible Cullompton isolate. Results of this study support the concept of altered drug metabolism in TCBZ-Resistant flukes and this process may play a role in the development of drug resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of drug metabolism. The flavin monooxygenase system (FMO) was inhibited using methimazole (MTZ) to see whether a TCBZ-resistant isolate could be made more sensitive to TCBZ action. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible isolates were used for these experiments. The FMO system was inhibited by a 2-h pre-incubation in methimazole (100 mu M), then incubated for a further 22 h in NCTC medium containing either MTZ; MTZ+nicotinamide adenine dinucleotide phosphate (NADPH) (1 nM); MTZ+NADPH+TCBZ (15 mu g/ml); or MTZ+NADPH+triclabendazole sulphoxide (TCBZ.SO) (15 mu g/ml). Changes to fluke ultrastructure following drug treatment and metabolic inhibition were assessed using transmission electron microscopy. After treatment with either TCBZ or TCBZ.SO on their own, there was greater disruption to the TCBZ-susceptible than triclabedazole-resistant isolate. However, co-incubation with MTZ+TCBZ, but more particularly MTZ+TCBZ.SO, led to more severe changes to the TCBZ-resistant isolate than with each drug on its own, with severe swelling of the basal infolds and mucopolysaccharide masses in the syncytium, accompanied by a reduction in numbers of secretory bodies. The synthesis and production of secretory bodies in the tegumental cells was severely affected as well. With the TCBZ-susceptible Cullompton isolate, there was limited potentiation of drug action. The results support the concept of altered drug metabolism in TCBZ-resistant flukes, and this process may play a role in the development of drug resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of drug metabolism. The cytochrome P450 (CYP P450) system was inhibited using piperonyl butoxide (PB). The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible isolates were used for these experiments. The CYP P450 system was inhibited by a 2 h pre-incubation in PB (100 mu M). Flukes were then incubated for a further 22 h in NCTC medium containing either PB; PB + nicotinamide adenine dinucleotide phosphate (NADPH) (1 nM); PB + NADPH + TCBZ (15 mu g/ml); or PB + NADPH + TCBZ.SO (15 mu g/ml). Morphological changes resulting from drug treatment and following metabolic inhibition were assessed using scanning electron microscopy. After treatment with either TCBZ or TCBZ.SO alone, there was greater disruption to the TCBZ-susceptible than the resistant isolate. However, co-incubation with PB and TCBZ/TCBZ.SO lead to more severe surface changes to the TCBZ-resistant Oberon isolate than with each drug on its own. With the TCBZ-susceptible Cullompton isolate, there was limited potentiation of drug action, and only with TCBZ.SO. The results support the concept of altered drug metabolism in TCBZ-resistant flukes and this process may play a role in the development of drug resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemistry of nicotinamide adenine dinucleotide (NADH) in its reduced form was examined in two room-temperature ionic liquids (RTILs): 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([C(2)mim][NTf2]) and 1-butyl-3-methylimidazolium hexafluorophos-phate ([C(4)mim][PF6]). NADH oxidation has previously been studied in aqueous solution where it follows the pathway: one-electron oxidation to the NADH(center dot+) radical cation, deprotonation to produce the neutral NAD(center dot) radical, then oxidation to the NAD(+) cation. The electrochemistry of NADH was examined in [C(2)mim][NTf2] and [C(4)mim][PF6] at the bare Pt electrode (10 mu m diameter): In [C(2)mim][NTf2], no oxidation was observed; in [C(4)mim][PF6], an oxidative signal was observed, which likely followed the pathway described above, where upon formation of the NADH(center dot+) radical cation, the [PF6](-) anion (unlike the [NTf2](-) anion) reacts with the proton to form HPF6, which decomposes. This demonstrates the tunability of RTILs, whereby the choice of one anion in an RTIL over another can promote a reaction. Poly(vinylferrocene) (PVF) was studied as a mediator for the NADH detection in both RTILs to attempt to lower the potential of NADH detection. The Pt electrode was modified with PVF, and the oxidation of PVF to PVF+ was observed in [C(2)mim][NTf2] and [C(4)mim][PF6], but no mediation of the NADH oxidation was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of drug metabolism. The cytochrome P450 (CYP 450) enzyme pathway was inhibited using ketoconazole (KTZ) to see whether a TCBZ-resistant isolate could be made more sensitive to TCBZ action. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible isolates were used for these experiments. The CYP 450 system was inhibited by a 2-h pre-incubation in ketoconazole (40 mu M), then incubated for a further 22 h in NCTC medium containing either KTZ, KTZ+nicotinamide adenine dinucleotide phosphate (NADPH) (1 nM), KTZ+NADPH+TCBZ (15 mu g/ml), or KTZ+NADPH+triclabendazole sulphoxide (TCBZ. SO; 15 mu g/ml). Changes to fluke ultrastructure following drug treatment and metabolic inhibition were assessed using transmission electron microscopy. After treatment with either TCBZ or TCBZ. SO on their own, there was greater disruption to the TCBZ-susceptible than TCBZ-resistant isolate. However, co-incubation with KTZ+TCBZ, but more particularly KTZ+TCBZ. SO, led to more severe changes to the TCBZ-resistant isolate than with each drug on its own: in the syncytium, for example, there was severe swelling of the basal infolds and their associated mucopolysaccharide masses, accompanied by an accumulation of secretory bodies just below the apex. Golgi complexes were greatly reduced or absent in the tegumental cells and the synthesis, production, and transport of secretory bodies were badly disrupted. With the TCBZ-susceptible Cullompton isolate, there was limited potentiation of drug action. The results support the concept of altered drug metabolism in TCBZ-resistant flukes and this process may play a role in the development of drug resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Deoxy-C-nucleosides are a subcategory of C-nucleosides that has not been explored extensively, largely because the synthesis is less facile. Flexible synthetic procedures giving access to 2-deoxy-C-nucleosides are therefore of interest. To exemplify the versatility and highlight the limitations of a synthetic route recently developed to that effect, the first synthesis of 2-deoxy benzamide riboside is reported. Biological properties of this novel C-nucleoside are also discussed. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study sought to investigate the effect of endothelial dysfunction on the development of cardiac hypertrophy and fibrosis.
Background: Endothelial dysfunction accompanies cardiac hypertrophy and fibrosis, but its contribution to these conditions is unclear. Increased nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2) activation causes endothelial dysfunction.
Methods: Transgenic mice with endothelial-specific NOX2 overexpression (TG mice) and wild-type littermates received long-term angiotensin II (AngII) infusion (1.1 mg/kg/day, 2 weeks) to induce hypertrophy and fibrosis.
Results: TG mice had systolic hypertension and hypertrophy similar to those seen in wild-type mice but developed greater cardiac fibrosis and evidence of isolated left ventricular diastolic dysfunction (p < 0.05). TG myocardium had more inflammatory cells and VCAM-1-positive vessels than did wild-type myocardium after AngII treatment (both p < 0.05). TG microvascular endothelial cells (ECs) treated with AngII recruited 2-fold more leukocytes than did wild-type ECs in an in vitro adhesion assay (p < 0.05). However, inflammatory cell NOX2 per se was not essential for the profibrotic effects of AngII. TG showed a higher level of endothelial-mesenchymal transition (EMT) than did wild-type mice after AngII infusion. In cultured ECs treated with AngII, NOX2 enhanced EMT as assessed by the relative expression of fibroblast versus endothelial-specific markers.
Conclusions: AngII-induced endothelial NOX2 activation has profound profibrotic effects in the heart in vivo that lead to a diastolic dysfunction phenotype. Endothelial NOX2 enhances EMT and has proinflammatory effects. This may be an important mechanism underlying cardiac fibrosis and diastolic dysfunction during increased renin-angiotensin activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putida KT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by Δppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and Δppk strains under all growth conditions tested. In the Δppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. Δppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42 h of lag period compared with 24 h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the Δppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Far from simply lining the inner surface of blood vessels, the cellular monolayer that comprises the endothelium is a highly active organ that regulates vascular tone. In health, the endothelium maintains the balance between opposing dilator and constrictor influences, while in disease, it is the common ground on which cardiovascular risk factors act to initiate the atherosclerotic process. As such, it is the site at which cardiovascular disease begins and consequently acts as a barometer of an individual's likely future cardiovascular health. The vascular endothelium is a very active organ responsible for the regulation of vascular tone through the effects of locally synthesized mediators, predominantly nitric oxide (NO), endothelial NO synthase (eNOS), and superoxide. NO is abundantly evident in normally functioning vasculature where it acts as a vasodilator, inhibits inflammation, and has an antiaggregant effect on platelets. Its depletion is both a sign and cause of endothelial dysfunction resulting from reduced activity of eNOS and amplified production of nicotinamide adenine dinucleotide oxidase, which, in turn, results in raised levels of reactive oxygen species. This cascade is the basis for reduced vascular compliance through an imbalanced regulation of tone with a predominance of vasoconstrictive elements. Further, structural changes in the microvasculature are a critical early step in the loss of normal function. This microvascular dysfunction is known to be highly predictive of future macrovascular events and is consequently a very attractive target for intervention in the hypertensive population in order to prevent cardiovascular events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1beta secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3-/- mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory "danger" receptor

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La forme canadienne-française du syndrome de Leigh (LSFC) est une maladie métabolique associée à une déficience en cytochrome oxydase (COX) et caractérisée par des crises d’acidose lactique, menant à une mort prématurée. Les mécanismes qui sous-tendent l’induction des crises restent inconnus et il n’existe aucune thérapie efficace pour les prévenir. Cette étude vise à caractériser l'effet de facteurs métaboliques périphériques potentiellement altérés chez les patients LSFC sur la mort de lignées cellulaires issues de ces patients et de témoins puis, à identifier des agents thérapeutiques pouvant la prévenir. Nous postulons que (i) ces facteurs métaboliques induiront une mort prématurée des cellules de patients et que (ii) les interventions susceptibles de la prévenir pallieront les conséquences de la déficience en COX, soit la diminution des taux d’adénosine triphosphate (ATP) et l’augmentation du stress oxydant, du nicotinamide adénine dinucléotide (NADH) et des lipides toxiques. Un criblage de 8 facteurs sanguins et 10 agents thérapeutiques a été réalisé. Les paramètres mesurés incluent la nécrose, l’apoptose, l’ATP et l’activité de la COX. Les fibroblastes LSFC sont plus susceptibles à la mort par nécrose (39±6%) induite par du palmitate plus lactate, un effet associé à des niveaux d’ATP diminués (53±8%). La mort cellulaire est réduite de moitié par l’ajout combiné d’agents ciblant le NADH, l’ATP et les lipides toxiques, alors que l’ajout d’antioxydants l’augmente. Ainsi, un excès de nutriments pourrait induire la mort prématurée des cellules LSFC et, pour atténuer cette mort, il serait important de combiner plusieurs interventions ciblant différents mécanismes.