947 resultados para navigation meshes
Resumo:
E-government is seen as a promising approach for governments to improve their service towards citizens and become more cost-efficient in service delivery. This is often combined with one-stop government, which is a citizen-oriented approach stressing integrated provision of services from multiple departments via a single access point, the one-stop government portal. While the portal concept is gaining prominence in practice, there is little know about its status in academic literature. This hinders academics in building an accumulated body of knowledge around the concept and makes it hard for practitioners to access relevant academic insights on the topic. The objective of this study is to identify and understand the key themes of the one-stop government portal concept in academic, e-government research. A holistic analysis is provided by addressing different viewpoints: social-political, legal, organizational, user, security, service, data & information, and technical. As overall finding we conclude that there are two different approaches: a more pragmatic approach focuses on quick wins in particular related to usability and navigation and a more ambitious, transformational approach having far reaching social-political, legal, organizational implications.
Resumo:
Using Monte Carlo simulation for radiotherapy dose calculation can provide more accurate results when compared to the analytical methods usually found in modern treatment planning systems, especially in regions with a high degree of inhomogeneity. These more accurate results acquired using Monte Carlo simulation however, often require orders of magnitude more calculation time so as to attain high precision, thereby reducing its utility within the clinical environment. This work aims to improve the utility of Monte Carlo simulation within the clinical environment by developing techniques which enable faster Monte Carlo simulation of radiotherapy geometries. This is achieved principally through the use new high performance computing environments and simpler alternative, yet equivalent representations of complex geometries. Firstly the use of cloud computing technology and it application to radiotherapy dose calculation is demonstrated. As with other super-computer like environments, the time to complete a simulation decreases as 1=n with increasing n cloud based computers performing the calculation in parallel. Unlike traditional super computer infrastructure however, there is no initial outlay of cost, only modest ongoing usage fees; the simulations described in the following are performed using this cloud computing technology. The definition of geometry within the chosen Monte Carlo simulation environment - Geometry & Tracking 4 (GEANT4) in this case - is also addressed in this work. At the simulation implementation level, a new computer aided design interface is presented for use with GEANT4 enabling direct coupling between manufactured parts and their equivalent in the simulation environment, which is of particular importance when defining linear accelerator treatment head geometry. Further, a new technique for navigating tessellated or meshed geometries is described, allowing for up to 3 orders of magnitude performance improvement with the use of tetrahedral meshes in place of complex triangular surface meshes. The technique has application in the definition of both mechanical parts in a geometry as well as patient geometry. Static patient CT datasets like those found in typical radiotherapy treatment plans are often very large and present a significant performance penalty on a Monte Carlo simulation. By extracting the regions of interest in a radiotherapy treatment plan, and representing them in a mesh based form similar to those used in computer aided design, the above mentioned optimisation techniques can be used so as to reduce the time required to navigation the patient geometry in the simulation environment. Results presented in this work show that these equivalent yet much simplified patient geometry representations enable significant performance improvements over simulations that consider raw CT datasets alone. Furthermore, this mesh based representation allows for direct manipulation of the geometry enabling motion augmentation for time dependant dose calculation for example. Finally, an experimental dosimetry technique is described which allows the validation of time dependant Monte Carlo simulation, like the ones made possible by the afore mentioned patient geometry definition. A bespoke organic plastic scintillator dose rate meter is embedded in a gel dosimeter thereby enabling simultaneous 3D dose distribution and dose rate measurement. This work demonstrates the effectiveness of applying alternative and equivalent geometry definitions to complex geometries for the purposes of Monte Carlo simulation performance improvement. Additionally, these alternative geometry definitions allow for manipulations to be performed on otherwise static and rigid geometry.
Resumo:
We introduce a new image-based visual navigation algorithm that allows the Cartesian velocity of a robot to be defined with respect to a set of visually observed features corresponding to previously unseen and unmapped world points. The technique is well suited to mobile robot tasks such as moving along a road or flying over the ground. We describe the algorithm in general form and present detailed simulation results for an aerial robot scenario using a spherical camera and a wide angle perspective camera, and present experimental results for a mobile ground robot.
Resumo:
This paper presents a mapping and navigation system for a mobile robot, which uses vision as its sole sensor modality. The system enables the robot to navigate autonomously, plan paths and avoid obstacles using a vision based topometric map of its environment. The map consists of a globally-consistent pose-graph with a local 3D point cloud attached to each of its nodes. These point clouds are used for direction independent loop closure and to dynamically generate 2D metric maps for locally optimal path planning. Using this locally semi-continuous metric space, the robot performs shortest path planning instead of following the nodes of the graph --- as is done with most other vision-only navigation approaches. The system exploits the local accuracy of visual odometry in creating local metric maps, and uses pose graph SLAM, visual appearance-based place recognition and point clouds registration to create the topometric map. The ability of the framework to sustain vision-only navigation is validated experimentally, and the system is provided as open-source software.
Resumo:
Background: Achieving soft tissue balance is an operative goal in total knee arthroplasty. This randomised, prospective study compared computer navigation to conventional techniques in achieving soft tissue balance. Methods: Forty one consecutive knee arthroplasties were randomised to either a non-navigated or navigated group. In the non-navigated group, balancing was carried out using surgeon judgement. In the navigated group, balancing was carried out using navigation software. In both groups, the navigation software was used as a measuring tool. Results: Balancing of the mediolateral extension gap was superior in the navigation group (p=0.001). No significant difference was found between the two groups in balancing the mediolateral flexion gap or in achieving equal flexion and extension gaps. Conclusions: Computer navigation offered little advantage over experienced surgeon judgement in achieving soft tissue balance in knee replacement. However, the method employed in the navigated group did provide a reproducible and objective assessment of flexion and extension gaps and may therefore benefit surgeons in training.
Resumo:
This thesis develops the hardware and software framework for an integrated navigation system. Dynamic data fusion algorithms are used to develop a system with a high level of resistance to the typical problems that affect standard navigation systems.
Resumo:
In this paper, we present a monocular vision based autonomous navigation system for Micro Aerial Vehicles (MAVs) in GPS-denied environments. The major drawback of monocular systems is that the depth scale of the scene can not be determined without prior knowledge or other sensors. To address this problem, we minimize a cost function consisting of a drift-free altitude measurement and up-to-scale position estimate obtained using the visual sensor. We evaluate the scale estimator, state estimator and controller performance by comparing with ground truth data acquired using a motion capture system. All resources including source code, tutorial documentation and system models are available online.
Resumo:
University campuses have thousands of new students, staff and visitors every year. For those who are unfamiliar with the campus environment, an effective pedestrian navigation system is essential to orientate and guide them around the campus. Compared to traditional navigation systems, such as physical signposts and digital map kiosks, a mobile pedestrian navigation system provides advantages in terms of mobility, sensing capabilities, weather-awareness when the user is on the go. However, how best to design a mobile pedestrian navigation system for university campuses is still vague due to limited research in understanding how pedestrians interact with the system, and what information is required for traveling in a complex environment such as university campus. In this paper, we present a mobile pedestrian navigation system called QUT Nav. A field study with eight participants was run in a university campus context, aiming to identify key information required in a mobile pedestrian navigation system for user traveling in university campuses. It also investigated user's interactions and behaviours while they were navigating in the campus environment. Based on the results from the field study, a recommendation for designing mobile pedestrian navigation systems for university campuses is stated.
Resumo:
Passengers navigating through airports can experience confusion or become lost, resulting in dissatisfaction, missed flights and flight delays. Passengers moving through airports are required to make many navigation decisions, for example to find the correct check-in desk or find the correct boarding gate. Prior experience of using the airports is likely to enable intuitive navigation, however limited research on this topic currently exists. In this paper we investigate passenger navigation by observing 30 participants at one international airport as they moved from check-in to a departure gate. The results indicate that passengers do spend time navigating intuitively through the airport, and that there is a positive correlation between intuitive navigation and airport familiarity. It was also found that participants with lower airport familiarity spend a greater percentage of overall navigation time searching and assessing/acquiring information than high familiarity participants. These findings provide evidence that passengers with higher airport familiarity have a greater understanding of the process, have a better understanding of what information to look for and use this familiarity to navigate intuitively. Findings from this research will have design implications for both current, and future airport terminals and other large spaces that people navigate through.
Resumo:
In this paper, we present SMART (Sequence Matching Across Route Traversals): a vision- based place recognition system that uses whole image matching techniques and odometry information to improve the precision-recall performance, latency and general applicability of the SeqSLAM algorithm. We evaluate the system’s performance on challenging day and night journeys over several kilometres at widely varying vehicle velocities from 0 to 60 km/h, compare performance to the current state-of- the-art SeqSLAM algorithm, and provide parameter studies that evaluate the effectiveness of each system component. Using 30-metre sequences, SMART achieves place recognition performance of 81% recall at 100% precision, outperforming SeqSLAM, and is robust to significant degradations in odometry.
Resumo:
This paper presents a long-term experiment where a mobile robot uses adaptive spherical views to localize itself and navigate inside a non-stationary office environment. The office contains seven members of staff and experiences a continuous change in its appearance over time due to their daily activities. The experiment runs as an episodic navigation task in the office over a period of eight weeks. The spherical views are stored in the nodes of a pose graph and they are updated in response to the changes in the environment. The updating mechanism is inspired by the concepts of long- and short-term memories. The experimental evaluation is done using three performance metrics which evaluate the quality of both the adaptive spherical views and the navigation over time.
Resumo:
An on-road study was conducted to evaluate a complementary tactile navigation signal on driving behaviour and eye movements for drivers with hearing loss (HL) compared to drivers with normal hearing (NH). 32 participants (16 HL and 16 NH) performed two preprogrammed navigation tasks. In one, participants received only visual information, while the other also included a vibration in the seat to guide them in the correct direction. SMI glasses were used for eye tracking, recording the point of gaze within the scene. Analysis was performed on predefined regions. A questionnaire examined participant's experience of the navigation systems. Hearing loss was associated with lower speed, higher satisfaction with the tactile signal and more glances in the rear view mirror. Additionally, tactile support led to less time spent viewing the navigation display.
Resumo:
This thesis presents social requirements and design considerations from a study evaluating interactive approaches to social navigation and user-generated information sharing in urban environments using mobile devices. It investigates innovative ways to leverage mobile information and communication technology in order to provide a social navigation platform for residents and visitors in and for public urban places. Through a design case study this work presents CityFlocks, a mobile information system that offers an easy way for information-seeking new residents or visitors to access tacit knowledge from local people about their new community. It is intended to enable visitors and new residents in a city to tap into the knowledge and experiences of local residents in order to gather information about their new environment. Its design specifically aims to lower existing barriers of access and facilitate social navigation in urban places. In various user tests it evaluates two general user interaction alternatives – direct and indirect social navigation – and analyses which interaction method works better for people using a mobile device to socially navigate urban environments. The outcomes are relevant for the user interaction design of future mobile information systems that leverage the social navigation approach.
Resumo:
We describe recent biologically-inspired mapping research incorporating brain-based multi-sensor fusion and calibration processes and a new multi-scale, homogeneous mapping framework. We also review the interdisciplinary approach to the development of the RatSLAM robot mapping and navigation system over the past decade and discuss the insights gained from combining pragmatic modelling of biological processes with attempts to close the loop back to biology. Our aim is to encourage the pursuit of truly interdisciplinary approaches to robotics research by providing successful case studies.
Resumo:
This paper proposes an approach to achieve resilient navigation for indoor mobile robots. Resilient navigation seeks to mitigate the impact of control, localisation, or map errors on the safety of the platform while enforcing the robot’s ability to achieve its goal. We show that resilience to unpredictable errors can be achieved by combining the benefits of independent and complementary algorithmic approaches to navigation, or modalities, each tuned to a particular type of environment or situation. In this paper, the modalities comprise a path planning method and a reactive motion strategy. While the robot navigates, a Hidden Markov Model continually estimates the most appropriate modality based on two types of information: context (information known a priori) and monitoring (evaluating unpredictable aspects of the current situation). The robot then uses the recommended modality, switching between one and another dynamically. Experimental validation with a SegwayRMP- based platform in an office environment shows that our approach enables failure mitigation while maintaining the safety of the platform. The robot is shown to reach its goal in the presence of: 1) unpredicted control errors, 2) unexpected map errors and 3) a large injected localisation fault.