598 resultados para n-alkanes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]A thermodynamic study is carried out on binary systems composed of propyl ethanoate with six alkanes, from pentane to decane. Vapor pressures of the ester and the isobaric vapor−liquid equilibria of these six mixtures were measured at 101.32 kPa in a small-capacity ebulliometer and also the mixing properties yE = vE,hE over a range of temperatures and at atmospheric pressure. Adequate correlations are drawn for the surfaces yE = yE(x,T) with an interpretation on the behavior of the mixtures and also using cp E data from literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This work makes a theoretical–experimental contribution to the study of ester and alkane solutions. Experimental data of isobaric vapor–liquid equilibria (VLE) are presented at 101.3 kPa for binary systems of methyl ethanoate with six alkanes (from C5 to C10), and of volumes and mixing enthalpies, vE and hE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Isobaric vapor–liquid equilibria at p = 101.32 kPa (iso-p VLE) and the mixing properties, hE and vE, are determined for a set of twelve binary solutions: HCOOCuH2u+1(1)+CnH2n+2(2) with u = (1–4) and n = (7– 9). The (iso-p VLE) present deviations from the ideal behavior, which augment as u diminishes and n increases. Systems with [u = 2,3 n = 7] and [u =4 , n = 7,8] present a minimum-boiling azeotrope. The nonideality is also reflected in high endothermic values, hE > 0, and expansive effects, vE > 0, for all the binaries, which increase regularly with n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioremediation implies the use of living organisms, primarily microorganisms, to convert environmental contaminants into less toxic forms. The impact of the consequences of hydrocarbon release in the environment maintain a high research interest in the study of microbial metabolisms associated with the biodegradation of aromatic and aliphatic hydrocarbons but also in the analysis of microbial enzymes that can convert petroleum substrates to value-added products. The studies described in this Thesis fall within the research field that directs the efforts into identifying gene/proteins involved in the catabolism of n-alkanes and into studying the regulatory mechanisms leading to their oxidation. In particular the studies were aimed at investigating the molecular aspects of the ability of Rhodococcus sp. BCP1 to grow on aliphatic hydrocarbons as sole carbon and energy sources. We studied the ability of Rhodococcus sp. BCP1 to grow on gaseous (C2-C4), liquid (C5-C16) and solid (C17-C28) n-alkanes that resulted to be biochemically correlated with the activity of one or more monooxygenases. In order to identify the alkane monooxygenase that is involved in the n-alkanes degradation pathway in Rhodococcus sp. BCP1, PCR-based methodology was applied by using degenerate primers targeting AlkB monooxygenase family members. As result, a chromosomal region, including the alkB gene cluster, was cloned from Rhodococcus sp. BCP1 genome. We characterized the products of this alkB gene cluster and the products of the orfs included in the flanking regions by comparative analysis with the homologues in the database. alkB gene expression studies were carried out by RT-PCR and by the construction of a promoter probe vector containing the lacZ gene downstream of the alkB promoter. B-galactosidase assays revealed the alkB promoter activity induced by n-alkanes and by n-alkanes metabolic products. Furthermore, the transcriptional start of alkB gene was determined by primer extension procedure. A proteomic approach was subsequently applied to compare the protein patterns expressed by BCP1 growing on n-butane, n-hexane, n-hexadecane or n-eicosane with the protein pattern expressed by BCP1 growing on succinate. The accumulation of enzymes specifically induced on n-alkanes was determined. These enzymes were identified by tandem mass spectrometry (LC/MS/MS). Finally, a prm gene, homologue to the gene family coding for soluble di-iron monooxygenases (SDIMOs), has been isolated from Rhodococcus sp. BCP1 genome. This gene product could be involved in the degradation of gaseous n-alkanes in this Rhodococcus strain. The versatility in utilizing hydrocarbons and the discovery of new remarkable metabolic activities outline the potential applications of this microorganism in environmental and industrial biotechnologies.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indian Summer Monsoon (ISM) is a major global climatic phenomenon. Long-term precipitation proxy records of the ISM, however, are often fragmented and discontinuous, impeding an estimation of the magnitude of precipitation variability from the Last Glacial to the present. To improve our understanding of past ISM variability, we provide a continuous reconstructed record of precipitation and continental vegetation changes from the lower Ganges-Brahmaputra-Meghna catchment and the Indo-Burman ranges over the last 18,000 years (18 ka). The records derive from a marine sediment core from the northern Bay of Bengal (NBoB), and are complemented by numerical model results of spatial moisture transport and precipitation distribution over the Bengal region. The isotopic composition of terrestrial plant waxes (dD and d13C of n-alkanes) are compared to results from an isotope-enabled general atmospheric circulation model (IsoCAM) for selected time slices (pre-industrial, mid-Holocene and Heinrich Stadial 1). Comparison of proxy and model results indicate that past changes in the dD of precipitation and plant waxes were mainly driven by the amount effect, and strongly influenced by ISM rainfall. Maximum precipitation is detected for the Early Holocene Climatic Optimum (EHCO; 10.5-6 ka BP), whereas minimum precipitation occurred during the Heinrich Stadial 1 (HS1; 16.9-15.4 ka BP). The IsoCAM model results support the hypothesis of a constant moisture source (i.e. the NBoB) throughout the study period. Relative to the pre-industrial period the model reconstructions show 20% more rain during the mid-Holocene (6 ka BP) and 20% less rain during the Heinrich Stadial 1 (HS1), respectively. A shift from C4-plant dominated ecosystems during the glacial to subsequent C3/C4-mixed ones during the interglacial took place. Vegetation changes were predominantly driven by precipitation variability, as evidenced by the significant correlation between the dD and d13C alkane records. When compared to other records across the ISM domain, precipitation and vegetation changes inferred from our records and the numerical model results provide evidence for a coherent regional variability of the ISM from the Last Glacial to the present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Siwalik paleosol and Bengal Fan sediment samples were analyzed for the abundance and isotopic composition of n-alkanes in order to test for molecular evidence of the expansion of C4 grasslands on the Indian subcontinent. The carbon isotopic compositions of high-molecular-weight alkanes in both the ancient soils and sediments record a shift from low d13C values (ca. -30 per mil) to higher values (ca. -22 per mil) prior to 6 Ma. This shift is similar in magnitude to that recorded by paleosol carbonate and fossil teeth, and is consistent with a relatively rapid transition from dominantly C3 vegetation to an ecosystem dominated by C4 plants typical of semi-arid grasslands. The n-alkane values from our paleosol samples indicate that the isotopic change began as early as 9 Ma, reflecting either a growing contribution of C4 plants to a dominantly C3 biomass or a decrease in water availability to C3 plants. Molecular and isotopic analyses of other compounds, including n-alcohols and low-molecular weight n-alkanes indicate paleosol organic matter contains contributions from a mixture of sources, including vascular plants, algae and/or cyanobacteria and microorganisms. A range of inputs is likewise reflected in the isotopic composition of the total organic carbon from these samples. In addition, the n-alkanes from two samples show little evidence for pedegenic inputs and we suggest the compounds were derived instead from the paleosol's parent materials. We suggest the record of vegetation in ancient terrestrial ecosystems is better reconstructed using isotopic signatures of molecular markers, rather than bulk organic carbon. This approach provides a means of expanding the spatial and temporal records of C4 plant biomass which will help to resolve possible tectonic, climatic or biological controls on the rise of this important component of the terrestrial biosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstructing terrestrial water budgets is of prime importance for understanding past climate and environment. To shed more light on how plant-wax derived n-alkanes may be used for this purpose we investigated the distribution and stable isotopic compositions of hydrogen (dD) and carbon (d13C) of plant-wax derived n-C29 and -C31 alkanes in terrestrial, coastal and offshore surface sediments in relation to hydrology along a NW-SE transect east of the Italian Apennines from the Po River to the Eastern Gulf of Taranto. The plant wax average chain length increases southward and may relate to increasing temperature and/or aridity. The plant wax dD of the terrestrial and coastal samples also increases southward and mainly reflects changes in the dD of precipitation. The d13C of plant waxes is primarily interpreted in terms of C3 vegetation changes rather than varying contributions by C4 plants. The plant wax d13C-dD composition of the Po River and Apennine rivers differs considerably from that in southern Italy, and suggests a mainly southern source for plant waxes in marine sediments of the Gulf of Taranto. This calibration provides a basis for the reconstruction of past changes in the Italian water balance and n-alkane source areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of samples from DSDP Leg 47 shows that transformation of organic matter in deep sea sediments is completly analogous to evolution of organic matter in sedimentary sequences on continents and depends on the same factors. Crucial among these factors are: genesis of organic matter, nature of its diagenetic changes, and current stage of catagenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three bottom sediment cores were collected from the top, slope, and foot of a small topographic high located near the West European continental rise within the Porcupine abyssal plain at the battleship Bismark wreck site. Using high-efficient gas chromatography technique we determined content and examined molecular composition of n-alkane fraction of hydrocarbons and phenol compounds of lignin. n-Alkane and phenol concentrations in bottom sediments of all three cores were low both in values per unit mass of sediments and in organic matter composition that is typical for pelagic deposits of the World Ocean. They vary from 0.07 to 2.01 µg/g of dry sediment and from 0.0001 to 0.01% of TOC; phenol ranges are from 1.43 to 11.1 µg/g and from 0.03 to 0.6%. Non-uniform supply of terrigenous matter to the bottom under conditions of changes in sedimentation environment in different geological epochs is the principal reason for significant variations in n-alkane and lignin concentrations with depth in the cores. Lignin and its derivatives make the main contribution to formation of organic matter composition of the region in study. With respect to n-alkane and lignin concentrations organic matter of deposits of the West European Basin is composed of remains of higher plants and of autochtonous organic matter of marine flora; they have mixed terrigenous-autochtonous (terrigenous-planktonogenic) origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using gas chromatography technique we examined molecular composition of n-alkanes and lignin from bottom sediments of a core 385 cm long collected in the region of the Blake-Bahama Abyssal Plain. We determined C_org concentrations and lignin composition in soils, mangrove roots and leaves, in algae Sargassum and Ascophyllum, in corals and timber of a sunken ship; they were compared with data on lignin in bottom sediments. Mixed planktonogenic and terrigenous origin of organic matter in the core was proved with different proportions of terrigenous and planktonogenic components at different levels. Multiple changes in dominating sources of organic matter over a period required for accumulation of a four meter thick sedimentary sequence (about 4 m) are shown as obtained from changes in composition and contents of organic-chemical markers referring to classes of n-alkanes and phenols.