Isotopic composition of terrestrial plant waxes (dD and d13C of n-alkanes) of sediment core SO188_342 from the Northern Bay of Bengal for the last 18 ka
Cobertura |
LATITUDE: 19.973400 * LONGITUDE: 90.033900 * DATE/TIME START: 2006-07-24T00:00:00 * DATE/TIME END: 2006-07-24T00:00:00 |
---|---|
Data(s) |
25/09/2014
|
Resumo |
The Indian Summer Monsoon (ISM) is a major global climatic phenomenon. Long-term precipitation proxy records of the ISM, however, are often fragmented and discontinuous, impeding an estimation of the magnitude of precipitation variability from the Last Glacial to the present. To improve our understanding of past ISM variability, we provide a continuous reconstructed record of precipitation and continental vegetation changes from the lower Ganges-Brahmaputra-Meghna catchment and the Indo-Burman ranges over the last 18,000 years (18 ka). The records derive from a marine sediment core from the northern Bay of Bengal (NBoB), and are complemented by numerical model results of spatial moisture transport and precipitation distribution over the Bengal region. The isotopic composition of terrestrial plant waxes (dD and d13C of n-alkanes) are compared to results from an isotope-enabled general atmospheric circulation model (IsoCAM) for selected time slices (pre-industrial, mid-Holocene and Heinrich Stadial 1). Comparison of proxy and model results indicate that past changes in the dD of precipitation and plant waxes were mainly driven by the amount effect, and strongly influenced by ISM rainfall. Maximum precipitation is detected for the Early Holocene Climatic Optimum (EHCO; 10.5-6 ka BP), whereas minimum precipitation occurred during the Heinrich Stadial 1 (HS1; 16.9-15.4 ka BP). The IsoCAM model results support the hypothesis of a constant moisture source (i.e. the NBoB) throughout the study period. Relative to the pre-industrial period the model reconstructions show 20% more rain during the mid-Holocene (6 ka BP) and 20% less rain during the Heinrich Stadial 1 (HS1), respectively. A shift from C4-plant dominated ecosystems during the glacial to subsequent C3/C4-mixed ones during the interglacial took place. Vegetation changes were predominantly driven by precipitation variability, as evidenced by the significant correlation between the dD and d13C alkane records. When compared to other records across the ISM domain, precipitation and vegetation changes inferred from our records and the numerical model results provide evidence for a coherent regional variability of the ISM from the Last Glacial to the present. |
Formato |
application/zip, 2 datasets |
Identificador |
https://doi.pangaea.de/10.1594/PANGAEA.836164 doi:10.1594/PANGAEA.836164 |
Idioma(s) |
en |
Publicador |
PANGAEA |
Direitos |
CC-BY: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted |
Fonte |
Supplement to: Contreras-Rosales, Lorena Astrid; Jennerjahn, Tim C; Tharammal, Thejna; Meyer, Vera D; Lückge, Andreas; Paul, André; Schefuß, Enno (2014): Evolution of the Indian Summer Monsoon and terrestrial vegetation in the Bengal region during the past 18 ka. Quaternary Science Reviews, 102, 133-148, doi:10.1016/j.quascirev.2014.08.010 |
Palavras-Chave | #Age; AGE; Age, 14C; Age, 14C calibrated, CALIB 5.0.2 (Stuiver et al., 2005); Age, dated; Age, dated, range, maximum; Age, dated, range, minimum; Age, dated standard deviation; Age dated; Age dated max; Age dated min; Age std dev; BP; BP, mean; Center for Marine Environmental Sciences; d13C n-alkanes; d13C std dev; dD n-alkane; dD std dev; delta 13C, n-alkanes; delta 13C, standard deviation; delta Deuterium, n-alkane; delta Deuterium, standard deviation; Depth; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Depth bot; Depth top; ice corrected; Lab label; Laboratory code/label; Leibniz Center for Tropical Marine Ecology; MARUM; per mil, propagated, n-alkanes; Poznan; Thermo Trace GC - Finnigan MAT 252 (GC/IR-MS); Thermo Trace GC - Thermo Fischer MAT 253 (GC/IR-MS); vs. VPDB; ZMT |
Tipo |
Dataset |