905 resultados para multiple-input single-output FRF


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aims at developing a variable structure adaptive backstepping controller (VS-ABC) by using state observers for SISO (Single Input Single Output), linear and time invariant systems with relative degree one. Therefore, the lters were replaced by a Luenberger Adaptive Observer and the control algorithm uses switching laws. The presented simulations compare the controller performance, considering when the state variables are estimated by an observer, with the case that the variables are available for measurement. Even with numerous performance advantages, adaptive backstepping controllers still have very complex algorithms, especially when the system state variables are not measured, since the use of lters on the plant input and output is not something trivial. As an attempt to make the controller design more intuitive, an adaptive observer as an alternative to commonly used K lters can be used. Furthermore, since the states variables are considered known, the controller has a reduction on the dependence of the unknown plant parameters on the design. Also, switching laws could be used in the controller instead of the traditional integral adaptive laws because they improve the system transient performance and increase the robustness against external disturbances in the plant input

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compliant mechanisms with evenly distributed stresses have better load-bearing ability and larger range of motion than mechanisms with compliance and stresses lumped at flexural hinges. In this paper, we present a metric to quantify how uniformly the strain energy of deformation and thus the stresses are distributed throughout the mechanism topology. The resulting metric is used to optimize cross-sections of conceptual compliant topologies leading to designs with maximal stress distribution. This optimization framework is demonstrated for both single-port mechanisms and single-input single-output mechanisms. It is observed that the optimized designs have lower stresses than their nonoptimized counterparts, which implies an ability for single-port mechanisms to store larger strain energy, and single-input single-output mechanisms to perform larger output work before failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have proposed a novel robust inversion-based neurocontroller that searches for the optimal control law by sampling from the estimated Gaussian distribution of the inverse plant model. However, for problems involving the prediction of continuous variables, a Gaussian model approximation provides only a very limited description of the properties of the inverse model. This is usually the case for problems in which the mapping to be learned is multi-valued or involves hysteritic transfer characteristics. This often arises in the solution of inverse plant models. In order to obtain a complete description of the inverse model, a more general multicomponent distributions must be modeled. In this paper we test whether our proposed sampling approach can be used when considering an arbitrary conditional probability distributions. These arbitrary distributions will be modeled by a mixture density network. Importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The effectiveness of the importance sampling from an arbitrary conditional probability distribution will be demonstrated using a simple single input single output static nonlinear system with hysteretic characteristics in the inverse plant model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops two new indices for measuring productivity in multi-input multi-output situations. One index enables the measure of productivity change of a unit over time while the second index makes it possible to compare two units on productivity at the same or different points in time. Productivity in a single input single output context is defined as the ratio of output to input. In multi-input multi-output contexts this ratio is not defined. Instead, one of the methods traditionally used is the Malmquist Index of productivity change over time. This is computed by reference to the distances of the input-output bundles of a production unit at two different points in time from the efficient boundaries corresponding to those two points in time. The indices developed in this paper depart form the use of two different reference boundaries and instead they use a single reference boundary which in a sense is the most efficient boundary observed over two or more successive time periods. We discuss the assumptions which make possible the definition of such a single reference boundary and proceed to develop the two Malmquist-type indices for measuring productivity. One key advantage of using a single reference boundary is that the resulting index values are circular. That is it is possible to use the index values of successive time periods to derive an index value of productivity change over a time period of any length covered by successive index values or vice versa. Further, the use of a single reference boundary makes it possible to construct an index for comparing the productivities of two units either at the same or at two different points in time. This was not possible with the traditional Malmquist Index. We decompose both new indices into components which isolate production unit from industry or comparator unit effects. The components themselves like the indices developed are also circular. The components of the indices drill down to reveal more clearly the performance of each unit over time relative either to itself or to other units. The indices developed and their components are aimed at managers of production units to enable them to diagnose the performance of their units with a view to guiding them to improved performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the measurement of the characteristics of nonlinear systems by crosscorrelation, using pseudorandom input signals based on m sequences. The systems are characterised by Volterra series, and analytical expressions relating the rth order Volterra kernel to r-dimensional crosscorrelation measurements are derived. It is shown that the two-dimensional crosscorrelation measurements are related to the corresponding second order kernel values by a set of equations which may be structured into a number of independent subsets. The m sequence properties determine how the maximum order of the subsets for off-diagonal values is related to the upper bound of the arguments for nonzero kernel values. The upper bound of the arguments is used as a performance index, and the performance of antisymmetric pseudorandom binary, ternary and quinary signals is investigated. The performance indices obtained above are small in relation to the periods of the corresponding signals. To achieve higher performance with ternary signals, a method is proposed for combining the estimates of the second order kernel values so that the effects of some of the undesirable nonzero values in the fourth order autocorrelation function of the input signal are removed. The identification of the dynamics of two-input, single-output systems with multiplicative nonlinearity is investigated. It is shown that the characteristics of such a system may be determined by crosscorrelation experiments using phase-shifted versions of a common signal as inputs. The effects of nonlinearities on the estimates of system weighting functions obtained by crosscorrelation are also investigated. Results obtained by correlation testing of an industrial process are presented, and the differences between theoretical and experimental results discussed for this case;

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy balancing capability of cooperative communication is utilized to solve the energy hole problem in wireless sensor networks. We first propose a cooperative transmission strategy, where intermediate nodes participate in two cooperative multi-input single-output (MISO) transmissions with the node at the previous hop and a selected node at the next hop, respectively. Then, we study the optimization problems for power allocation of the cooperative transmission strategy by examining two different approaches: network lifetime maximization (NLM) and energy consumption minimization (ECM). For NLM, the numerical optimal solution is derived and a searching algorithm for suboptimal solution is provided when the optimal solution does not exist. For ECM, a closed-form solution is obtained. Numerical and simulation results show that both the approaches have much longer network lifetime than SISO transmission strategies and other cooperative communication schemes. Moreover, NLM which features energy balancing outperforms ECM which focuses on energy efficiency, in the network lifetime sense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the hop distance optimization problem in ad hoc networks where cooperative multiinput- single-output (MISO) is adopted to improve the energy efficiency of the network. We first establish the energy model of multihop cooperative MISO transmission. Based on the model, the energy consumption per bit of the network with high node density is minimized numerically by finding an optimal hop distance, and, to get the global minimum energy consumption, both hop distance and the number of cooperating nodes around each relay node for multihop transmission are jointly optimized. We also compare the performance between multihop cooperative MISO transmission and single-input-single-output (SISO) transmission, under the same network condition (high node density). We show that cooperative MISO transmission could be energyinefficient compared with SISO transmission when the path-loss exponent becomes high. We then extend our investigation to the networks with varied node densities and show the effectiveness of the joint optimization method in this scenario using simulation results. It is shown that the optimal results depend on network conditions such as node density and path-loss exponent, and the simulation results are closely matched to those obtained using the numerical models for high node density cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polynomial phase modulated (PPM) signals have been shown to provide improved error rate performance with respect to conventional modulation formats under additive white Gaussian noise and fading channels in single-input single-output (SISO) communication systems. In this dissertation, systems with two and four transmit antennas using PPM signals were presented. In both cases we employed full-rate space-time block codes in order to take advantage of the multipath channel. For two transmit antennas, we used the orthogonal space-time block code (OSTBC) proposed by Alamouti and performed symbol-wise decoding by estimating the phase coefficients of the PPM signal using three different methods: maximum-likelihood (ML), sub-optimal ML (S-ML) and the high-order ambiguity function (HAF). In the case of four transmit antennas, we used the full-rate quasi-OSTBC (QOSTBC) proposed by Jafarkhani. However, in order to ensure the best error rate performance, PPM signals were selected such as to maximize the QOSTBC’s minimum coding gain distance (CGD). Since this method does not always provide a unique solution, an additional criterion known as maximum channel interference coefficient (CIC) was proposed. Through Monte Carlo simulations it was shown that by using QOSTBCs along with the properly selected PPM constellations based on the CGD and CIC criteria, full diversity in flat fading channels and thus, low BER at high signal-to-noise ratios (SNR) can be ensured. Lastly, the performance of symbol-wise decoding for QOSTBCs was evaluated. In this case a quasi zero-forcing method was used to decouple the received signal and it was shown that although this technique reduces the decoding complexity of the system, there is a penalty to be paid in terms of error rate performance at high SNRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the complexity-performance trade-off of several heuristic near-optimum multiuser detection (MuD) approaches applied to the uplink of synchronous single/multiple-input multiple-output multicarrier code division multiple access (S/MIMO MC-CDMA) systems. Genetic algorithm (GA), short term tabu search (STTS) and reactive tabu search (RTS), simulated annealing (SA), particle swarm optimization (PSO), and 1-opt local search (1-LS) heuristic multiuser detection algorithms (Heur-MuDs) are analyzed in details, using a single-objective antenna-diversity-aided optimization approach. Monte- Carlo simulations show that, after convergence, the performances reached by all near-optimum Heur-MuDs are similar. However, the computational complexities may differ substantially, depending on the system operation conditions. Their complexities are carefully analyzed in order to obtain a general complexity-performance framework comparison and to show that unitary Hamming distance search MuD (uH-ds) approaches (1-LS, SA, RTS and STTS) reach the best convergence rates, and among them, the 1-LS-MuD provides the best trade-off between implementation complexity and bit error rate (BER) performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a Text Summarisation tool, compendium, capable of generating the most common types of summaries. Regarding the input, single- and multi-document summaries can be produced; as the output, the summaries can be extractive or abstractive-oriented; and finally, concerning their purpose, the summaries can be generic, query-focused, or sentiment-based. The proposed architecture for compendium is divided in various stages, making a distinction between core and additional stages. The former constitute the backbone of the tool and are common for the generation of any type of summary, whereas the latter are used for enhancing the capabilities of the tool. The main contributions of compendium with respect to the state-of-the-art summarisation systems are that (i) it specifically deals with the problem of redundancy, by means of textual entailment; (ii) it combines statistical and cognitive-based techniques for determining relevant content; and (iii) it proposes an abstractive-oriented approach for facing the challenge of abstractive summarisation. The evaluation performed in different domains and textual genres, comprising traditional texts, as well as texts extracted from the Web 2.0, shows that compendium is very competitive and appropriate to be used as a tool for generating summaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.