641 resultados para microRNAs (miRNA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

SummaryEwing's sarcoma family tumors (ESFT) are the second most frequent cancer of bone in adolescents and young adults. ESFT are characterized by a chromosomal translocation that involves the 5' segment of the EWSR1 gene and the 3' segment of an ets transcription factor family member gene. In 85% of cases the chromosomal translocation generates the fusion protein EWSR1-FLI-1. Recent work from our laboratory identified mesenchymal stem cells (MSC) as the putative cell of origin of ESFT and characterized a CD133+ subpopulation of ESFT cells with tumor initating and self-renewal capacity, known as cancer stem cells (CSC). MicroRNAs (miRNAs) are small non-coding RNA that regulate protein expression at the post-transcriptional level by either repressing translation or destabilizing mRNA. MiRNAs participate in several biological processes including cell proliferation and differentiation. We used miRNA expression profile comparison between MSC and ESFT cell lines and CD133+ ESFT cells and CD133" ESFT cells to investigate the role of miRNAs in ESFT pathogenesis. MiRNA expression profile comparison of MSC and ESFT cell lines identified 35 differentially expressed miRNAs. Among these was down-regulation of let-7a which results, in part, by the direct repression of let-7a-l promoter by EWSR1-FLI-1. Overexpression of let-7a in ESFT cells blocked ESFT tumorigenesis through an High-motility group AT-hook2 (HMGA2)-mediated mechanism.MiRNA profiling of CD133+ ESFT and CD 133" ESFT cells revealed a broad repression of miRNAs in CD133+ ESFT mediated by down-regulation of TARBP2, a central regulator of the miRNA maturation pathway. Down-regulation of TARBP2 in ESFT cell lines results in a miRNA expression profile reminescent of that observed in CD133+ ESFT and associated with increased tumorigenicity. Enhancement of TARBP2 activity using the antibiotic enoxacin or overexpression of miRNA-143 or miRNA-145, two targets of TARBP2, impaired ESFT CSC self-renewal and block ESFT tumorigenicity. Moreover in vivo administration of synthetic let- 7a, miRNA-143 or miRNA-145 blocks ESFT tumor growth.Thus, dysregulation of miRNA expression is a key feature in ESFT pathogenesis and restoration of their expressions might be used as a new therapeutic tool.RésuméLe sarcome d'Ewing est la deuxième tumeur osseuse la plus fréquente chez l'enfant et le jeune adolescent. Le sarcome d'Ewing est caractérisé par une translocation chromosomique qui produit une protéine de fusion EWSR1-FLI-1. Des récents travaux ont identifié les cellules mésenchymateuses souches (MSC) comme étant les cellules à l'origine du sarcome d'Ewing ainsi qu'une sous-population de cellules exprimant le marqueur CD 133, dans le sarcome d'Ewing connu comme les cellules cancéreuses souches (CSC). Ces cellules ont la capacité d'initier la croissance tumorale et possèdent des propriétés d'auto-renouvellement. Les microRNAs (miRNAs) sont de petits ARN qui ne codent pas pour des protéines et qui contrôlent l'expression des protéines en bloquant la traduction ou en dégradant l'ARNm. Les miRNAs participent à différents processus biologiques comme la prolifération et la différenciation cellulaires.Le but de ce travail est d'étudier le rôle des miRNAs dans le sarcome d'Ewing. Un profil d'expression de miRNAs entre les MSC et des lignées cellulaires de sarcome d'Ewing a mis en évidence 35 miRNAs différemment exprimés. Parmi ceux-ci, la répression de let-7a est liée à la répression directe du promoteur de let-7a-l par EWSR-FLI-1. La sur-expression de let-7a dans des lignées cellulaires de sarcome d'Ewing inhibe leur croissance tumorale. Cette inhibition de croissance tumorale est régulée par la protéine high-motility group AT-hook2 (HMGA2).Un profil d'expression de miRNAs entre les cellules du sarcome d'Ewing CD133+ et CD133" montre une sous-expression d'un grand nombre de miRNAs dans les cellules CD133+ par rapport aux cellules CD133". Cette différence d'expression de miRNAs est due à la répression du gène TARBP2 qui participe à la maturation des miRNAs. La suppression de TARBP2 dans des cellules d'Ewing induit un profil d'expression de miRNAs similaire aux cellules CD133+ du sarcome d'Ewing et augmente la tumorigenèse des lignées cellulaires. De plus l'utilisation d'enoxacin, une molécule qui augmente l'activité de TARBP2 ou la sur- expression des miRNA143 ou miRNA-145 dans les CSC du sarcome d'Ewing bloque l'auto- renouvellement des cellules et la croissance tumorale. Finalement, l'administration de let-7a, miRNA-143 ou miRNA-145, dans des souris bloque la croissance du sarcome d'Ewing. Ces résultats indiquent que la dysrégulation des miRNAs participe à la pathogenèse du sarcome d'Ewing et que les miRNAs peuvent être utilisés comme des agents thérapeutiques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are a class of short (similar to 22nt), single stranded RNA molecules that function as post-transcriptional regulators of gene expression. MiRNAs can regulate a variety of important biological pathways, including: cellular proliferation, differentiation and apoptosis. Profiling of miRNA expression patterns was shown to be more useful than the equivalent mRNA profiles for characterizing poorly differentiated tumours. As such, miRNA expression "signatures" are expected to offer serious potential for diagnosing and prognosing cancers of any provenance. The aim of this study was to investigate the potential of using deregulation of urinary miRNAs in order to detect Prostate Cancer (PCa) among Benign Prostatic Hyperplasia (BPH). To identify the miRNA signatures specific for PCa, miRNA expression profiling of 8 PCa patients, 12 BPH patients and 10 healthy males was carried out using whole genome expression profiling. Differential expression of two individual miRNAs between healthy males and BPH patients was detected and found to possibly target genes related to PCa development and progression. The sensitivity and specificity of miR-1825 for detecting PCa among BPH individuals was found to be 60% and 69%, respectively. Whereas, the sensitivity and specificity of miR-484 were 80% and 19%, respectively. Additionally, the sensitivity and specificity for miR-1825/484 in tandem were 45% and 75%, respectively. The proposed PCa miRNA signatures may therefore be of great value for the accurate diagnosis of PCa and BPH. This exploratory study has identified several possible targets that merit further investigation towards the development and validation of diagnostically useful, non-invasive, urine-based tests that might not only help diagnose PCa but also possibly help differentiate it from BPH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs (miRNAs), an abundant class of ~22 nucleotide non-coding RNAs, are thought to play an important regulatory role in animal and plant development at the posttranscriptional level. Many miRNAs cloned from mouse bone marrow cells are differentially regulated in various hematopoietic lineages, suggesting that they might influence hematopoietic lineage differentiation. Some human miRNAs are linked to leukemias: the miR-15a/miR-16 locus is frequently deleted or down-regulated in patients with B-cell chronic lymphocytic leukemia and miR-142 is at a translocation site found in a case of aggressive B-cell leukemia. miR-181, a miRNA upregulated only in the B cell lineage of mouse bone marrow cells, promotes B cell differentiation and inhibits production of CD8⁺ T cells when expressed in hematopoietic stem/progenitor cells. In contrast miR-142s inhibits production of both CD4⁺ and CD8⁺ T cells and does not affect B cells. Collectively, these results indicate that microRNAs are components of the molecular circuitry controlling mouse hematopoiesis and suggest that other microRNAs have similar regulatory roles during other facets of vertebrate development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Vascular hyperproliferative disorders are characterized by excessive smooth muscle cell (SMC) proliferation leading to vessel remodeling and occlusion. In pulmonary arterial hypertension (PAH), SMC phenotype switching from a terminally differentiated contractile to synthetic state is gaining traction as our understanding of the disease progression improves. While maintenance of SMC contractile phenotype is reportedly orchestrated by a MEF2C-myocardin (MYOCD) interplay, little is known regarding molecular control at this nexus. Moreover, the burgeoning interest in microRNAs (miRs) provides the basis for exploring their modulation of MEF2C-MYOCD signaling, and in turn, a pro-proliferative, synthetic SMC phenotype. We hypothesized that suppression of SMC contractile phenotype in pulmonary hypertension is mediated by miR-214 via repression of the MEF2C-MYOCD-leiomodin1 (LMOD1) signaling axis. Methods and Results In SMCs isolated from a PAH patient cohort and commercially obtained hPASMCs exposed to hypoxia, miR-214 expression was monitored by qRT-PCR. miR-214 was upregulated in PAH- vs. control subject hPASMCs as well as in commercially obtained hPASMCs exposed to hypoxia. These increases in miR-214 were paralleled by MEF2C, MYOCD and SMC contractile protein downregulation. Of these, LMOD1 and MEF2C were directly targeted by the miR. Mir-214 overexpression mimicked the PAH profile, downregulating MEF2C and LMOD1. AntagomiR-214 abrogated hypoxia-induced suppression of the contractile phenotype and its attendant proliferation. Anti-miR-214 also restored PAH-PASMCs to a contractile phenotype seen during vascular homeostasis. Conclusions Our findings illustrate a key role for miR-214 in modulation of MEF2C-MYOCD-LMOD1 signaling and suggest that an antagonist of miR-214 could mitigate SMC phenotype changes and proliferation in vascular hyperproliferative disorders including PAH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the course of ageing there is a natural and progressive loss of skeletal muscle mass. The onset and progression of age-related muscle wasting is associated with an attenuated activation of Akt-mTOR signalling and muscle protein synthesis in response to anabolic stimuli such as resistance exercise. MicroRNAs (miRNAs) are novel and important post-transcriptional regulators of numerous cellular processes. The role of miRNAs in the regulation of muscle protein synthesis following resistance exercise is poorly understood. This study investigated the changes in skeletal muscle miRNA expression following an acute bout of resistance exercise in young and old subjects with a focus on the miRNA species predicted to target Akt-mTOR signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle makes up approximately 40% of the total body mass, providing structural support and enabling the body to maintain posture, to control motor movements and to store energy. It therefore plays a vital role in whole body metabolism. Skeletal muscle displays remarkable plasticity and is able to alter its size, structure and function in response to various stimuli; an essential quality for healthy living across the lifespan. Exercise is an important stimulator of extracellular and intracellular stress signals that promote positive adaptations in skeletal muscle. These adaptations are controlled by changes in gene transcription and protein translation, with many of these molecules identified as potential therapeutic targets to pharmacologically improve muscle quality in patient groups too ill to exercise. MicroRNAs (miRNAs) are recently identified regulators of numerous gene networks and pathways and mainly exert their effect by binding to their target messenger RNAs (mRNAs), resulting in mRNA degradation or preventing protein translation. The role of exercise as a regulatory stimulus of skeletal muscle miRNAs is now starting to be investigated. This review highlights our current understanding of the regulation of skeletal muscle miRNAs with exercise and disease as well as how they may control skeletal muscle health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The miR-17∼92. or oncomiR-1, cluster encodes oncogenic microRNAs (miRNAs), and it also promotes retinoblastoma (RB) tumor formation. Antagomir and miRNA mimics based approaches are widely tried against oncogenic and tumor suppressive miRNAs. Other methods for targeting cancer related miRNAs are still under development. In the current study, we focused on the pri-miRNA-17∼92 aptamer (pri-apt), which can potentially replace the mix of five antagomirs by one aptamer that function to abrogate the maturation of miR-17, miR-18a, and miR-19b (P<0.05) for targeting RB. We used RB cell lines WERI-Rb1 and Y79 as an in vitro model. Cellular changes upon transfecting the pri-apt led to S-phase arrest in WERI-Rb1 cells and onset of apoptosis in both Y79 and WERI-Rb1 cell lines. There was increased cytotoxicity as measured by lactate dehydrogenase activity in pri-apt treated Y79 cells (P<0.05), and significant inhibition of cell proliferation was observed in both of the cell lines. Thus we showed the antiproliferative property of pri-apt in RB cell lines, which can be readily modified by developing appropriate vectors for the delivery of the aptamer specifically to cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Genética) - IBB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to analyze the expression profile of the microRNAs previously described as associated with childhood ALL, miR-92a, miR-100, miR-125a-5p, miR-128a, miR-181b, miR-196b and let-7e, and their association with biological/prognostic features in 128 consecutive samples of childhood acute lymphoblastic leukemia (ALL) by quantitative real-time PCR. A significant association was observed between higher expression levels of miR-196b and T-ALL, miR-100 and patients with low white blood cell count at diagnosis and t(12;21) positive ALL. These findings suggest a potential activity of these microRNAs in pediatric ALL biology. (C) 2011 Elsevier Ltd. All rights reserved.