157 resultados para metaheuristics
Resumo:
The public transportation is gaining importance every year basically duethe population growth, environmental policies and, route and streetcongestion. Too able an efficient management of all the resources relatedto public transportation, several techniques from different areas are beingapplied and several projects in Transportation Planning Systems, indifferent countries, are being developed. In this work, we present theGIST Planning Transportation Systems, a Portuguese project involving twouniversities and six public transportation companies. We describe indetail one of the most relevant modules of this project, the crew-scheduling module. The crew-scheduling module is based on the application of meta-heuristics, in particular GRASP, tabu search and geneticalgorithm to solve the bus-driver-scheduling problem. The metaheuristicshave been successfully incorporated in the GIST Planning TransportationSystems and are actually used by several companies.
Resumo:
In this paper we present an algorithm to assign proctors toexams. This NP-hard problem is related to the generalized assignmentproblem with multiple objectives. The problem consists of assigningteaching assistants to proctor final exams at a university. We formulatethis problem as a multiobjective integer program (IP) with a preferencefunction and a workload-fairness function. We then consider also a weightedobjective that combines both functions. We develop a scatter searchprocedure and compare its outcome with solutions found by solving theIP model with CPLEX 6.5. Our test problems are real instances from aUniversity in Spain.
Resumo:
The Generalized Assignment Problem consists in assigning a setof tasks to a set of agents with minimum cost. Each agent hasa limited amount of a single resource and each task must beassigned to one and only one agent, requiring a certain amountof the resource of the agent. We present new metaheuristics forthe generalized assignment problem based on hybrid approaches.One metaheuristic is a MAX-MIN Ant System (MMAS), an improvedversion of the Ant System, which was recently proposed byStutzle and Hoos to combinatorial optimization problems, and itcan be seen has an adaptive sampling algorithm that takes inconsideration the experience gathered in earlier iterations ofthe algorithm. Moreover, the latter heuristic is combined withlocal search and tabu search heuristics to improve the search.A greedy randomized adaptive search heuristic (GRASP) is alsoproposed. Several neighborhoods are studied, including one basedon ejection chains that produces good moves withoutincreasing the computational effort. We present computationalresults of the comparative performance, followed by concludingremarks and ideas on future research in generalized assignmentrelated problems.
Resumo:
In this paper we propose a metaheuristic to solve a new version of the Maximum CaptureProblem. In the original MCP, market capture is obtained by lower traveling distances or lowertraveling time, in this new version not only the traveling time but also the waiting time willaffect the market share. This problem is hard to solve using standard optimization techniques.Metaheuristics are shown to offer accurate results within acceptable computing times.
Resumo:
objetivo de minimizar el retraso total en un ambiente con preparaciones quedependen de la secuencia. Se comparan los resultados obtenidos mediante laaplicación de los procedimientos de exploración de entornos AED, ANED,Recocido Simulado, Algoritmos Genéticos, Búsqueda Tabú y GRASP alproblema planteado. Los resultados sugieren que la Búsqueda Tabú es unatécnica viable de solución que puede proporcionar buenas soluciones cuandose considera el objetivo retraso total con tiempos de preparación dependientesde la secuencia.
Resumo:
Metaheuristic methods have become increasingly popular approaches in solving global optimization problems. From a practical viewpoint, it is often desirable to perform multimodal optimization which, enables the search of more than one optimal solution to the task at hand. Population-based metaheuristic methods offer a natural basis for multimodal optimization. The topic has received increasing interest especially in the evolutionary computation community. Several niching approaches have been suggested to allow multimodal optimization using evolutionary algorithms. Most global optimization approaches, including metaheuristics, contain global and local search phases. The requirement to locate several optima sets additional requirements for the design of algorithms to be effective in both respects in the context of multimodal optimization. In this thesis, several different multimodal optimization algorithms are studied in regard to how their implementation in the global and local search phases affect their performance in different problems. The study concentrates especially on variations of the Differential Evolution algorithm and their capabilities in multimodal optimization. To separate the global and local search search phases, three multimodal optimization algorithms are proposed, two of which hybridize the Differential Evolution with a local search method. As the theoretical background behind the operation of metaheuristics is not generally thoroughly understood, the research relies heavily on experimental studies in finding out the properties of different approaches. To achieve reliable experimental information, the experimental environment must be carefully chosen to contain appropriate and adequately varying problems. The available selection of multimodal test problems is, however, rather limited, and no general framework exists. As a part of this thesis, such a framework for generating tunable test functions for evaluating different methods of multimodal optimization experimentally is provided and used for testing the algorithms. The results demonstrate that an efficient local phase is essential for creating efficient multimodal optimization algorithms. Adding a suitable global phase has the potential to boost the performance significantly, but the weak local phase may invalidate the advantages gained from the global phase.
Resumo:
This work contains a series of studies on the optimization of three real-world scheduling problems, school timetabling, sports scheduling and staff scheduling. These challenging problems are solved to customer satisfaction using the proposed PEAST algorithm. The customer satisfaction refers to the fact that implementations of the algorithm are in industry use. The PEAST algorithm is a product of long-term research and development. The first version of it was introduced in 1998. This thesis is a result of a five-year development of the algorithm. One of the most valuable characteristics of the algorithm has proven to be the ability to solve a wide range of scheduling problems. It is likely that it can be tuned to tackle also a range of other combinatorial problems. The algorithm uses features from numerous different metaheuristics which is the main reason for its success. In addition, the implementation of the algorithm is fast enough for real-world use.
Resumo:
Ajoneuvojen reititystä on tutkittu 1950-luvulta asti, alunperin etsiessä polttoainekuljetuksille optimaalisinta reittiä varastolta useille palveluasemille. Siitä lähtien ajoneuvon reititystehtäviä on tutkittu akateemisesti ja niistä on muodostettu kymmeniä erilaisia variaatioita. Tehtävien ratkaisumenetelmät jaetaan tyypillisesti tarkkoihin menetelmiin sekä heuristiikkoihin ja metaheuristiikkoihin. Konetehon ja heuristiikoissa käytettävien algoritmien kehittymisen myötä reitinoptimointia on alettu tarjota kaupallisesti. CO-SKY-projektin tavoitteena on kaupallistaa web-pohjainen tai toiminnanohjausjärjestelmään integroitava ajoneuvon reititys. Diplomityössä tutkitaan kuljetustensuunnittelu- ja reitinoptimointiohjelmistojen kaupallistamiseen vaikuttavia keskeisiä ominaisuuksia. Ominaisuuksia on tarkasteltu: 1) erityisesti pk-kuljetusyritysten tarpeiden ja vaatimusten pohjalta, ja 2) markkinoilla olevien ohjelmistojen tarjontaa arvioiden. Näiden pohjalta on myös pyritty arvioimaan kysynnän ja tarjonnan kohtaamista. Pilottiasiakkaita haastattelemalla ohjelmistolle on kyetty asettamaan vaatimuksia, mutta samalla on kuultu käyttäjien mielipiteitä optimoinnista. Lukuisia logistiikkaohjelmistojen tarjoajia on haastateltu logistiikkamessuilla sekä Suomessa että Saksassa. Haastattelujen perusteella on saatu käsitys kyseisistä ohjelmista sekä optimoinnin tarjonnasta että kysynnästä. Akateeminen tutkimus aiheesta on laajaa, koskien niin teknistä toteutusta kuin myös (kysely-)tutkimuksia tarjolla olevien ohjelmistojen ominaisuuksista ja laadusta. Kuljetusyritysten tarpeissa on vaihtelua yritys- ja alakohtaisesti. Perusongelmat ovat samoja, joita reitinoptimoinnin akateemisessa tutkimuksessa käsitellään ja joita kaupalliset ohjelmistot pystyvät ratkaisemaan. Vaikka reitinoptimoinnilla saatavat hyödyt ovat mitattavissa, suunnittelu etenkin pk-yrityksissä tehdään pääosin yhä käsin. Messuhaastattelujen ja loppukäyttäjien mielipiteiden perusteella voidaan todeta kaupallisten ratkaisujen olevan suunniteltu isommille kuljetusyrityksille: tyypillisen it-projektin hinta, käyttöönottoaika ja asennus sekä ratkaisun takaisinmaksuaika vaikuttavat pk-yritysten hankintapäätökseen. Kaupallistamiseen liittyen haasteet liittyvät erityisesti segmentointiin ja markkinointiin asiakasarvon todentamisen ja sen välittämisen kautta.
Resumo:
This thesis introduces the Salmon Algorithm, a search meta-heuristic which can be used for a variety of combinatorial optimization problems. This algorithm is loosely based on the path finding behaviour of salmon swimming upstream to spawn. There are a number of tunable parameters in the algorithm, so experiments were conducted to find the optimum parameter settings for different search spaces. The algorithm was tested on one instance of the Traveling Salesman Problem and found to have superior performance to an Ant Colony Algorithm and a Genetic Algorithm. It was then tested on three coding theory problems - optimal edit codes, optimal Hamming distance codes, and optimal covering codes. The algorithm produced improvements on the best known values for five of six of the test cases using edit codes. It matched the best known results on four out of seven of the Hamming codes as well as three out of three of the covering codes. The results suggest the Salmon Algorithm is competitive with established guided random search techniques, and may be superior in some search spaces.
Resumo:
Ordered gene problems are a very common classification of optimization problems. Because of their popularity countless algorithms have been developed in an attempt to find high quality solutions to the problems. It is also common to see many different types of problems reduced to ordered gene style problems as there are many popular heuristics and metaheuristics for them due to their popularity. Multiple ordered gene problems are studied, namely, the travelling salesman problem, bin packing problem, and graph colouring problem. In addition, two bioinformatics problems not traditionally seen as ordered gene problems are studied: DNA error correction and DNA fragment assembly. These problems are studied with multiple variations and combinations of heuristics and metaheuristics with two distinct types or representations. The majority of the algorithms are built around the Recentering- Restarting Genetic Algorithm. The algorithm variations were successful on all problems studied, and particularly for the two bioinformatics problems. For DNA Error Correction multiple cases were found with 100% of the codes being corrected. The algorithm variations were also able to beat all other state-of-the-art DNA Fragment Assemblers on 13 out of 16 benchmark problem instances.
Characterizing Dynamic Optimization Benchmarks for the Comparison of Multi-Modal Tracking Algorithms
Resumo:
Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.
Resumo:
Cette thèse porte sur les problèmes de tournées de véhicules avec fenêtres de temps où un gain est associé à chaque client et où l'objectif est de maximiser la somme des gains recueillis moins les coûts de transport. De plus, un même véhicule peut effectuer plusieurs tournées durant l'horizon de planification. Ce problème a été relativement peu étudié en dépit de son importance en pratique. Par exemple, dans le domaine de la livraison de denrées périssables, plusieurs tournées de courte durée doivent être combinées afin de former des journées complètes de travail. Nous croyons que ce type de problème aura une importance de plus en plus grande dans le futur avec l'avènement du commerce électronique, comme les épiceries électroniques, où les clients peuvent commander des produits par internet pour la livraison à domicile. Dans le premier chapitre de cette thèse, nous présentons d'abord une revue de la littérature consacrée aux problèmes de tournées de véhicules avec gains ainsi qu'aux problèmes permettant une réutilisation des véhicules. Nous présentons les méthodologies générales adoptées pour les résoudre, soit les méthodes exactes, les méthodes heuristiques et les méta-heuristiques. Nous discutons enfin des problèmes de tournées dynamiques où certaines données sur le problème ne sont pas connues à l'avance. Dans le second chapitre, nous décrivons un algorithme exact pour résoudre un problème de tournées avec fenêtres de temps et réutilisation de véhicules où l'objectif premier est de maximiser le nombre de clients desservis. Pour ce faire, le problème est modélisé comme un problème de tournées avec gains. L'algorithme exact est basé sur une méthode de génération de colonnes couplée avec un algorithme de plus court chemin élémentaire avec contraintes de ressources. Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise. Le troisième chapitre propose donc une méthode de recherche adaptative à grand voisinage qui exploite les différents niveaux hiérarchiques du problème (soit les journées complètes de travail des véhicules, les routes qui composent ces journées et les clients qui composent les routes). Dans le quatrième chapitre, qui traite du cas dynamique, une stratégie d'acceptation et de refus des nouvelles requêtes de service est proposée, basée sur une anticipation des requêtes à venir. L'approche repose sur la génération de scénarios pour différentes réalisations possibles des requêtes futures. Le coût d'opportunité de servir une nouvelle requête est basé sur une évaluation des scénarios avec et sans cette nouvelle requête. Enfin, le dernier chapitre résume les contributions de cette thèse et propose quelques avenues de recherche future.
Resumo:
Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes
Resumo:
Les techniques de groupement technologique sont aujourd’hui utilisées dans de nombreux ateliers de fabrication; elles consistent à décomposer les systèmes industriels en sous-systèmes ou cellules constitués de pièces et de machines. Trouver le groupement technologique le plus efficace est formulé en recherche opérationnelle comme un problème de formation de cellules. La résolution de ce problème permet de tirer plusieurs avantages tels que la réduction des stocks et la simplification de la programmation. Plusieurs critères peuvent être définis au niveau des contraintes du problème tel que le flot intercellulaire,l’équilibrage de charges intracellulaires, les coûts de sous-traitance, les coûts de duplication des machines, etc. Le problème de formation de cellules est un problème d'optimisation NP-difficile. Par conséquent les méthodes exactes ne peuvent être utilisées pour résoudre des problèmes de grande dimension dans un délai raisonnable. Par contre des méthodes heuristiques peuvent générer des solutions de qualité inférieure, mais dans un temps d’exécution raisonnable. Dans ce mémoire, nous considérons ce problème dans un contexte bi-objectif spécifié en termes d’un facteur d’autonomie et de l’équilibre de charge entre les cellules. Nous présentons trois types de méthodes métaheuristiques pour sa résolution et nous comparons numériquement ces métaheuristiques. De plus, pour des problèmes de petite dimension qui peuvent être résolus de façon exacte avec CPLEX, nous vérifions que ces métaheuristiques génèrent des solutions optimales.
Resumo:
This paper presents a parallel genetic algorithm to the Steiner Problem in Networks. Several previous papers have proposed the adoption of GAs and others metaheuristics to solve the SPN demonstrating the validity of their approaches. This work differs from them for two main reasons: the dimension and the characteristics of the networks adopted in the experiments and the aim from which it has been originated. The reason that aimed this work was namely to build a comparison term for validating deterministic and computationally inexpensive algorithms which can be used in practical engineering applications, such as the multicast transmission in the Internet. On the other hand, the large dimensions of our sample networks require the adoption of a parallel implementation of the Steiner GA, which is able to deal with such large problem instances.