964 resultados para mesh: Models, Theoretical
Resumo:
INTRODUCTION According to genome wide association (GWA) studies as well as candidate gene approaches, Behçet's disease (BD) is associated with human leukocyte antigen (HLA)-A and HLA-B gene regions. The HLA-B51 has been consistently associated with the disease, but the role of other HLA class I molecules remains controversial. Recently, variants in non-HLA genes have also been associated with BD. The aims of this study were to further investigate the influence of the HLA region in BD and to explore the relationship with non-HLA genes recently described to be associated in other populations. METHODS This study included 304 BD patients and 313 ethnically matched controls. HLA-A and HLA-B low resolution typing was carried out by PCR-SSOP Luminex. Eleven tag single nucleotide polymorphisms (SNPs) located outside of the HLA-region, previously described associated with the disease in GWA studies and having a minor allele frequency in Caucasians greater than 0.15 were genotyped using TaqMan assays. Phenotypic and genotypic frequencies were estimated by direct counting and distributions were compared using the χ(2) test. RESULTS In addition to HLA-B*51, HLA-B*57 was found as a risk factor in BD, whereas, B*35 was found to be protective. Other HLA-A and B specificities were suggestive of association with the disease as risk (A*02 and A*24) or protective factors (A*03 and B*58). Regarding the non-HLA genes, the three SNPs located in IL23R and one of the SNPs in IL10 were found to be significantly associated with susceptibility to BD in our population. CONCLUSION Different HLA specificities are associated with Behçet's disease in addition to B*51. Other non-HLA genes, such as IL23R and IL-10, play a role in the susceptibility to the disease.
Resumo:
Circulating tumor cells (CTCs) are frequently associated with epithelial-mesenchymal transition (EMT).The objective of this study was to detect EMT phenotype through Vimentin (VIM) and Slug expression in cytokeratin (CK)-negative CTCs in non-metastatic breast cancer patients and to determine the importance of EGFR in the EMT phenomenon. In CK-negative CTCs samples, both VIM and Slug markers were co-expressed in the most of patients. Among patients EGFR+, half of them were positive for these EMT markers. Furthermore, after a systemic treatment 68% of patients switched from CK- to CK+ CTCs. In our experimental model we found that activation of EGFR signaling by its ligand on MCF-7 cells is sufficient to increase EMT phenotypes, to inhibit apoptotic events and to induce the loss of CK expression. The simultaneous detection of both EGFR and EMT markers in CTCs may improve prognostic or predictive information in patients with operable breast cancer.
Resumo:
Background. Collagen-induced arthritis (CIA), a murine experimental disease model induced by immunization with type II collagen (CII), is used to evaluate novel therapeutic strategies for rheumatoid arthritis. Adult stem cell marker Musashi-1 (Msi1) plays an important role in regulating the maintenance and differentiation of stem/precursor cells. The objectives of this investigation were to perform a morphological study of the experimental CIA model, evaluate the effect of TNFα-blocker (etanercept) treatment, and determine the immunohistochemical expression of Msi1 protein. Methods. CIA was induced in 50 male DBA1/J mice for analyses of tissue and serum cytokine; clinical and morphological lesions in limbs; and immunohistochemical expression of Msi1. Results. Clinically, TNFα-blocker treatment attenuated CIA on day 32 after immunization (P < 0.001). Msi1 protein expression was significantly higher in joints damaged by CIA than in those with no lesions (P < 0.0001) and was related to the severity of the lesions (Spearman's rho = 0.775, P = 0.0001). Conclusions. Treatment with etanercept attenuates osteoarticular lesions in the murine CIA model. Osteoarticular expression of Msi1 protein is increased in joints with CIA-induced lesion and absent in nonlesioned joints, suggesting that this protein is expressed when the lesion is produced in order to favor tissue repair.
Resumo:
BACKGROUND The aim of our work was to replicate, in a Southern European population, the association reported in Northern populations between PTPRC locus and response to anti-tumor necrosis factor (anti-TNF) treatment in rheumatoid arthritis (RA). We also looked at associations between five RA risk alleles and treatment response. METHODS We evaluated associations between anti-TNF treatment responses assessed by DAS28 change and by EULAR response at six months in 383 Portuguese patients. Univariate and multivariate linear and logistic regression analyses were performed. In a second step to confirm our findings, we pooled our population with 265 Spanish patients. RESULTS No association was found between PTPRC rs10919563 allele and anti-TNF treatment response, neither in Portuguese modeling for several clinical variables nor in the overall population combining Portuguese and Spanish patients. The minor allele for RA susceptibility, rs3761847 SNP in TRAF1/C5 region, was associated with a poor response in linear and logistic univariate and multivariate regression analyses. No association was observed with the other allellic variants. Results were confirmed in the pooled analysis. CONCLUSION This study did not replicate the association between PTPRC and the response to anti-TNF treatment in our Southern European population. We found that TRAF1/C5 risk RA variants potentially influence anti-TNF treatment response.
Resumo:
A new formula for glomerular filtration rate estimation in pediatric population from 2 to 18 years has been developed by the University Unit of Pediatric Nephrology. This Quadratic formula, accessible online, allows pediatricians to adjust drug dosage and/or follow-up renal function more precisely and in an easy manner.
Resumo:
The objectives of this study were to characterize raltegravir (RAL) population pharmacokinetics in HIV-positive (HIV(+)) and healthy individuals, identify influential factors, and search for new candidate genes involved in UDP glucuronosyltransferase (UGT)-mediated glucuronidation. The pharmacokinetic analysis was performed with NONMEM. Genetic association analysis was performed with PLINK using the relative bioavailability as the phenotype. Simulations were performed to compare once- and twice-daily regimens. A 2-compartment model with first-order absorption adequately described the data. Atazanavir, gender, and bilirubin levels influenced RAL relative bioavailability, which was 30% lower in HIV(+) than in healthy individuals. UGT1A9*3 was the only genetic variant possibly influencing RAL pharmacokinetics. The majority of RAL pharmacokinetic variability remains unexplained by genetic and nongenetic factors. Owing to the very large variability, trough drug levels might be very low under the standard dosing regimen, raising the question of a potential relevance of therapeutic drug monitoring of RAL in some situations.
Resumo:
PURPOSE: Aerodynamic drag plays an important role in performance for athletes practicing sports that involve high-velocity motions. In giant slalom, the skier is continuously changing his/her body posture, and this affects the energy dissipated in aerodynamic drag. It is therefore important to quantify this energy to understand the dynamic behavior of the skier. The aims of this study were to model the aerodynamic drag of alpine skiers in giant slalom simulated conditions and to apply these models in a field experiment to estimate energy dissipated through aerodynamic drag. METHODS: The aerodynamic characteristics of 15 recreational male and female skiers were measured in a wind tunnel while holding nine different skiing-specific postures. The drag and the frontal area were recorded simultaneously for each posture. Four generalized and two individualized models of the drag coefficient were built, using different sets of parameters. These models were subsequently applied in a field study designed to compare the aerodynamic energy losses between a dynamic and a compact skiing technique. RESULTS: The generalized models estimated aerodynamic drag with an accuracy of between 11.00% and 14.28%, and the individualized models estimated aerodynamic drag with an accuracy between 4.52% and 5.30%. The individualized model used for the field study showed that using a dynamic technique led to 10% more aerodynamic drag energy loss than using a compact technique. DISCUSSION: The individualized models were capable of discriminating different techniques performed by advanced skiers and seemed more accurate than the generalized models. The models presented here offer a simple yet accurate method to estimate the aerodynamic drag acting upon alpine skiers while rapidly moving through the range of positions typical to turning technique.
Resumo:
Extreme weather events can lead to immediate catastrophic mortality. Due to their rare occurrence, however, the long-term impacts of such events for ecological processes are unclear. We examined the effect of extreme winters on barn owl (Tyto alba) survival and reproduction in Switzerland over a 68-year period (approximately 20 generations). This long-term data set allowed us to compare events that occurred only once in several decades to more frequent events. Winter harshness explained 17 and 49% of the variance in juvenile and adult survival, respectively, and the two harshest winters were associated with major population crashes caused by simultaneous low juvenile and adult survival. These two winters increased the correlation between juvenile and adult survival from 0.63 to 0.69. Overall, survival decreased non-linearly with increasing winter harshness in adults, and linearly in juveniles. In contrast, brood size was not related to the harshness of the preceding winter. Our results thus reveal complex interactions between climate and demography. The relationship between weather and survival observed during regular years is likely to underestimate the importance of climate variation for population dynamics.
Resumo:
BACKGROUND: The hospital readmission rate has been proposed as an important outcome indicator computable from routine statistics. However, most commonly used measures raise conceptual issues. OBJECTIVES: We sought to evaluate the usefulness of the computerized algorithm for identifying avoidable readmissions on the basis of minimum bias, criterion validity, and measurement precision. RESEARCH DESIGN AND SUBJECTS: A total of 131,809 hospitalizations of patients discharged alive from 49 hospitals were used to compare the predictive performance of risk adjustment methods. A subset of a random sample of 570 medical records of discharge/readmission pairs in 12 hospitals were reviewed to estimate the predictive value of the screening of potentially avoidable readmissions. MEASURES: Potentially avoidable readmissions, defined as readmissions related to a condition of the previous hospitalization and not expected as part of a program of care and occurring within 30 days after the previous discharge, were identified by a computerized algorithm. Unavoidable readmissions were considered as censored events. RESULTS: A total of 5.2% of hospitalizations were followed by a potentially avoidable readmission, 17% of them in a different hospital. The predictive value of the screen was 78%; 27% of screened readmissions were judged clearly avoidable. The correlation between the hospital rate of clearly avoidable readmission and all readmissions rate, potentially avoidable readmissions rate or the ratio of observed to expected readmissions were respectively 0.42, 0.56 and 0.66. Adjustment models using clinical information performed better. CONCLUSION: Adjusted rates of potentially avoidable readmissions are scientifically sound enough to warrant their inclusion in hospital quality surveillance.
Resumo:
In species subject to individual and social learning, each individual is likely to express a certain number of different cultural traits acquired during its lifetime. If the process of trait innovation and transmission reaches a steady state in the population, the number of different cultural traits carried by an individual converges to some stationary distribution. We call this the trait-number distribution. In this paper, we derive the trait-number distributions for both individuals and populations when cultural traits are independent of each other. Our results suggest that as the number of cultural traits becomes large, the trait-number distributions approach Poisson distributions so that their means characterize cultural diversity in the population. We then analyse how the mean trait number varies at both the individual and population levels as a function of various demographic features, such as population size and subdivision, and social learning rules, such as conformism and anti-conformism. Diversity at the individual and population levels, as well as at the level of cultural homogeneity within groups, depends critically on the details of population demography and the individual and social learning rules.
Resumo:
Little research has been conducted to date on the role of primary health care (PHC) in the prevention of healthcare associated infections (HCAIs). The present article is a theoretical study of the principle of primum non nocere and aims to promote reflection on the role of PHC in HCAI prevention with emphasis on practical recommendations. The indirect and direct roles of PHC in HCAI prevention are debated in light of this guiding principle. With respect to the indirect role of PHC, we discuss the issues of hospital-centrism and ambulatory care-sensitive conditions. The article outlines a number of challenges faced by health services related to PHC’s direct role in HCAI prevention, highlights seven key components of HCAI prevention programmes within the PHC sphere and provides practical recommendations for HCAI control and prevention.
Resumo:
Small daily positive energy imbalances of 200 to 800 kJ (about 50 to 200 kcal) due to reduced resting energy expenditure (REE), reduced diet-induced thermogenesis, or physical inactivity are believed to predispose to obesity. However, estimates of the magnitude of the weight gain often fail to account for concurrent changes in body composition and increases in maintenance energy requirements as weight increases and energy equilibrium is re-established. Using previously reported data on body composition and REE in women and the energy cost of tissue deposition, we used mathematical models to predict the theoretical effect of a persistent reduction in energy expenditure on long-term weight gain, assuming no adaptation in energy intake. The analyses indicate the following effects of a reduced level of energy expenditure in lean and obese women: (i) REE rises more slowly with increasing degrees of obesity due to a declining proportion of the more metabolically active fat-free mass; so, for the same positive energy balance, a significantly greater weight gain is expected for obese than for lean women before energy equilibrium is re-established; (ii) due to the greater energy density of adipose tissue, the time course of weight gain to achieve energy balance is longer for obese subjects: in general, this is approximately five years for lean and ten years for obese women; (iii) the magnitude of weight gain of lean women in response to a reduced energy expenditure of 200 to 800 kJ/day is only about 3 to 15 kg, amounts insufficient to explain severe obesity.
Resumo:
The aim was to propose a strategy for finding reasonable compromises between image noise and dose as a function of patient weight. Weighted CT dose index (CTDI(w)) was measured on a multidetector-row CT unit using CTDI test objects of 16, 24 and 32 cm in diameter at 80, 100, 120 and 140 kV. These test objects were then scanned in helical mode using a wide range of tube currents and voltages with a reconstructed slice thickness of 5 mm. For each set of acquisition parameter image noise was measured and the Rose model observer was used to test two strategies for proposing a reasonable compromise between dose and low-contrast detection performance: (1) the use of a unique noise level for all test object diameters, and (2) the use of a unique dose efficacy level defined as the noise reduction per unit dose. Published data were used to define four weight classes and an acquisition protocol was proposed for each class. The protocols have been applied in clinical routine for more than one year. CTDI(vol) values of 6.7, 9.4, 15.9 and 24.5 mGy were proposed for the following weight classes: 2.5-5, 5-15, 15-30 and 30-50 kg with image noise levels in the range of 10-15 HU. The proposed method allows patient dose and image noise to be controlled in such a way that dose reduction does not impair the detection of low-contrast lesions. The proposed values correspond to high- quality images and can be reduced if only high-contrast organs are assessed.
Resumo:
Learning has been postulated to 'drive' evolution, but its influence on adaptive evolution in heterogeneous environments has not been formally examined. We used a spatially explicit individual-based model to study the effect of learning on the expansion and adaptation of a species to a novel habitat. Fitness was mediated by a behavioural trait (resource preference), which in turn was determined by both the genotype and learning. Our findings indicate that learning substantially increases the range of parameters under which the species expands and adapts to the novel habitat, particularly if the two habitats are separated by a sharp ecotone (rather than a gradient). However, for a broad range of parameters, learning reduces the degree of genetically-based local adaptation following the expansion and facilitates maintenance of genetic variation within local populations. Thus, in heterogeneous environments learning may facilitate evolutionary range expansions and maintenance of the potential of local populations to respond to subsequent environmental changes.