945 resultados para memory effects


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A newly introduced inverse class-E power amplifier (PA) was designed, simulated, fabricated, and characterized. The PA operated at 2.26 GHz and delivered 20.4-dBm output power with peak drain efficiency (DE) of 65% and power gain of 12 dB. Broadband performance was achieved across a 300-Mitz bandwidth with DE of better than 50% and 1-dB output-power flatness. The concept of enhanced injection predistortion with a capability to selectively suppress unwanted sub-frequency components and hence suitable for memory effects minimization is described coupled with a new technique that facilitates an accurate measurement of the phase of the third-order intermodulation (IM3) products. A robust iterative computational algorithm proposed in this paper dispenses with the need for manual tuning of amplitude and phase of the IM3 injected signals as commonly employed in the previous publications. The constructed inverse class-E PA was subjected to a nonconstant envelope 16 quadrature amplitude modulation signal and was linearized using combined lookup table (LUT) and enhanced injection technique from which superior properties from each technique can be simultaneously adopted. The proposed method resulted in 0.7% measured error vector magnitude (in rms) and 34-dB adjacent channel leakage power ratio improvement, which was 10 dB better than that achieved using the LUT predistortion alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment, is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found promising applications, e. g., in nanotribology and as a powerful thermostat for equilibration in classical molecular dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial, especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the exactly solvable case of a harmonic oscillator coupled to a Debye bath.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research into sea ice friction has focussed on ways to provide a model which maintains much of the clarity and simplicity of Amonton's law, yet also accounts for memory effects. One promising avenue of research has been to adapt the rate- and state- dependent models which are prevalent in rock friction. In such models it is assumed that there is some fixed critical slip displacement, which is effectively a measure of the displacement over which memory effects might be considered important. Here we show experimentally that a fixed critical slip displacement is not a valid assumption in ice friction, whereas a constant critical slip time appears to hold across a range of parameters and scales. As a simple rule of thumb, memory effects persist to a significant level for 10 s. We then discuss the implications of this finding for modelling sea ice friction and for our understanding of friction in general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea ice friction models are necessary to predict the nature of interactions between sea ice floes. These interactions are of interest on a range of scales, for example, to predict loads on engineering structures in icy waters or to understand the basin-scale motion of sea ice. Many models use Amonton's friction law due to its simplicity. More advanced models allow for hydrodynamic lubrication and refreezing of asperities; however, modeling these processes leads to greatly increased complexity. In this paper we propose, by analogy with rock physics, that a rate- and state-dependent friction law allows us to incorporate memory (and thus the effects of lubrication and bonding) into ice friction models without a great increase in complexity. We support this proposal with experimental data on both the laboratory (∼0.1 m) and ice tank (∼1 m) scale. These experiments show that the effects of static contact under normal load can be incorporated into a friction model. We find the parameters for a first-order rate and state model to be A = 0.310, B = 0.382, and μ0 = 0.872. Such a model then allows us to make predictions about the nature of memory effects in moving ice-ice contacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is concerned with non-equilibrium phenomena, with focus on the numerical simulation of the relaxation of non-conserved order parameters described by stochastic kinetic equations known as Ginzburg-Landau-Langevin (GLL) equations. We propose methods for solving numerically these type of equations, with additive and multiplicative noises. Illustrative applications of the methods are presented for different GLL equations, with emphasis on equations incorporating memory effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Routine applications of DNA hybridization biosensors are often restricted by the need for regenerating the single-stranded (ss) probe for subsequent reuse. This note reports on a viable alternative to prolonged thermal or chemical regeneration schemes through the mechanical polishing of oligonucleotide-bulk-modified carbon composite electrodes. The surface of these biocomposite hybridization biosensors can be renewed rapidly and reproducibly by a simple extrusion/polishing protocol. The immobilized probe retains its hybridization activity on confinement in the interior of the carbon paste matrix, with the use of fresh surfaces erasing memory effects and restoring the original target response, to allow numerous hybridization/measurement cycles. We expect that such reusable nucleic acid modified composite electrodes can be designed for a wide variety of biosensing applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of inductively-coupled plasma optical emission spectrometers with axial and radial views for determination of iodine in table salt was evaluated. Interference and memory effects in nitric acid and water-soluble tertiary amines (CFA-C) media were studied. Based on a factorial experiment, one optimum instrument operational condition for axial configuration, and two optima conditions for radial configuration was established. The ICP OES with axial view was 5-fold more sensitive than the radial view. Both matrix matching and standard addition methods were used for iodine quantification and for most samples, both strategies of calibration led to similar results. Recoveries ranged from 104 to 114%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semiconductors technologies are rapidly evolving driven by the need for higher performance demanded by applications. Thanks to the numerous advantages that it offers, gallium nitride (GaN) is quickly becoming the technology of reference in the field of power amplification at high frequency. The RF power density of AlGaN/GaN HEMTs (High Electron Mobility Transistor) is an order of magnitude higher than the one of gallium arsenide (GaAs) transistors. The first demonstration of GaN devices dates back only to 1993. Although over the past few years some commercial products have started to be available, the development of a new technology is a long process. The technology of AlGaN/GaN HEMT is not yet fully mature, some issues related to dispersive phenomena and also to reliability are still present. Dispersive phenomena, also referred as long-term memory effects, have a detrimental impact on RF performances and are due both to the presence of traps in the device structure and to self-heating effects. A better understanding of these problems is needed to further improve the obtainable performances. Moreover, new models of devices that take into consideration these effects are necessary for accurate circuit designs. New characterization techniques are thus needed both to gain insight into these problems and improve the technology and to develop more accurate device models. This thesis presents the research conducted on the development of new charac- terization and modelling methodologies for GaN-based devices and on the use of this technology for high frequency power amplifier applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within this work, a particle-polymer surface system is studied with respect to the particle-surface interactions. The latter are governed by micromechanics and are an important aspect for a wide range of industrial applications. Here, a new methodology is developed for understanding the adhesion process and measure the relevant forces, based on the quartz crystal microbalance, QCM. rnThe potential of the QCM technique for studying particle-surface interactions and reflect the adhesion process is evaluated by carrying out experiments with a custom-made setup, consisting of the QCM with a 160 nm thick film of polystyrene (PS) spin-coated onto the quartz and of glass particles, of different diameters (5-20µm), deposited onto the polymer surface. Shifts in the QCM resonance frequency are monitored as a function of the oscillation amplitude. The induced frequency shifts of the 3rd overtone are found to decrease or increase, depending on the particle-surface coupling type and the applied oscillation (frequency and amplitude). For strong coupling the 3rd harmonic decreased, corresponding to an “added mass” on the quartz surface. However, positive frequency shifts are observed in some cases and are attributed to weak-coupling between particle and surface. Higher overtones, i.e. the 5th and 7th, were utilized in order to derive additional information about the interactions taking place. For small particles, the shift for specific overtones can increase after annealing, while for large particle diameters annealing causes a negative frequency shift. The lower overtones correspond to a generally strong-coupling regime with mainly negative frequency shifts observed, while the 7th appears to be sensitive to the contact break-down and the recorded shifts are positive.rnDuring oscillation, the motion of the particles and the induced frequency shift of the QCM are governed by a balance between inertial forces and contact forces. The adherence of the particles can be increased by annealing the PS film at 150°C, which led to the formation of a PS meniscus. For the interpretation, the Hertz, Johnson-Kendall-Roberts, Derjaguin-Müller-Toporov and the Mindlin theory of partial slip are considered. The Mindlin approach is utilized to describe partial slip. When partial slip takes place induced by an oscillating load, a part of the contact ruptures. This results in a decrease of the effective contact stiffness. Additionally, there are long-term memory effects due to the consolidation which along with the QCM vibrations induce a coupling increase. However, the latter can also break the contact, lead to detachment and even surface damage and deformation due to inertia. For strong coupling the particles appear to move with the vibrations and simply act as added effective mass leading to a decrease of the resonance frequency, in agreement with the Sauerbrey equation that is commonly used to calculate the added mass on a QCM). When the system enters the weak-coupling regime the particles are not able to follow the fast movement of the QCM surface. Hence, they effectively act as adding a “spring” with an additional coupling constant and increase the resonance frequency. The frequency shift, however, is not a unique function of the coupling constant. Furthermore, the critical oscillation amplitude is determined, above which particle detach. No movement is detected at much lower amplitudes, while for intermediate values, lateral particle displacement is observed. rnIn order to validate the QCM results and study the particle effects on the surface, atomic force microscopy, AFM, is additionally utilized, to image surfaces and measure surface forces. By studying the surface of the polymer film after excitation and particle removal, AFM imaging helped in detecting three different meniscus types for the contact area: the “full contact”, the “asymmetrical” and a third one including a “homocentric smaller meniscus”. The different meniscus forms result in varying bond intensity between particles and polymer film, which could explain the deviation between number of particles per surface area measured by imaging and the values provided by the QCM - frequency shift analysis. The asymmetric and the homocentric contact types are suggested to be responsible for the positive frequency shifts observed for all three measured overtones, i.e. for the weak-coupling regime, while the “full contact” type resulted in a negative frequency shift, by effectively contributing to the mass increase of the quartz..rnThe interplay between inertia and contact forces for the particle-surface system leads to strong- or weak-coupling, with the particle affecting in three mentioned ways the polymer surface. This is manifested in the frequency shifts of the QCM system harmonics which are used to differentiate between the two interaction types and reflect the overall state of adhesion for particles of different size.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden verschiedene, insbesondere zeitliche Aspekte des Blickrichtungsnacheffekts (gaze aftereffect) untersucht. Dieser Effekt besagt, dass nach längerer Betrachtung von Bildern, die Personen mit abgewandtem Blick zeigen, die Wahrnehmung von Blickrichtungen in Richtung des adaptierten Blickes verschoben ist. Betrachter halten dann zugewandte Blicke fälschlicherweise für in die Gegenrichtung verschoben, und Blicke in die Adaptationsblickrichtung fälschlicherweise für geradeaus, d.h. sie fühlen sich angeschaut, obwohl sie es nicht werden. In dieser Dissertation wird der Blickrichtungsnacheffekt mit vier psychophysischen Experimenten untersucht, in denen die Probanden einfache kategoriale Urteile über die Blickrichtung der Testbilder abzugeben hatten.rnrnDas erste Experiment untersucht die Induktion des Blickrichtungsnacheffekts. Es wird gezeigt, dass keine separate Adaptationsphase für die Induktion des Nacheffekts notwendig ist. Auch die alleinige, relativ kurze Darbietung des zur Adaptation verwendeten Reizes (TopUp-Display) vor der Präsentation eines Testbildes führt im Laufe wiederholter experimenteller Darbietungen zu einer Verschiebung der allgemeinen Blickrichtungs-Tuningkurve, sowie zu ihrer Verbreiterung. In einem zweiten Experiment wird nachgewiesen, dass die Ausprägung des Blickrichtungsnacheffekts von der jeweiligen Darbietungszeit des Adaptationsreizes abhängt. Zwar ist der Nacheffekt umso stärker, je länger das TopUp-Display gezeigt wird. Aber auch bei sehr kurzen Darbietungszeiten von einer Sekunde kommt der Effekt bereits zustande, hier zeigt sich eine lokal begrenztere Wirkung. Die Auswertung des zeitlichen Verlaufs ergibt, dass sich der Effekt rasch vollständig aufbaut und bereits innerhalb der ersten Darbietungen entsteht. Das dritte Experiment zeigt, dass dem Nacheffekt sowohl kurzfristige Einwirkungen der direkt vor dem Testbild erfolgten Reizung zugrunde liegen, als auch langfristige Memory-Effekte, die über die im Laufe des Experiments gegebenen Wiederholungen akkumuliert werden. Bei Blickwinkeln von 5° halten sich kurzfristige und langfristige Einwirkungen in etwa die Waage. Bei Blickwinkeln von 10° aber sind nur knapp 20% kurzfristig, und etwa 80% langfristige Einwirkungen für den Effekt verantwortlich. In einem vierten Experiment wird die zeitliche Rückbildung des Effekts untersucht und gezeigt, dass sich der Blickrichtungsnacheffekt im Kontrast zu seiner schnellen Entstehung langsam, nämlich innerhalb mehrerer Minuten zurückbildet.rnrnDie Diskussion der Ergebnisse kommt zu dem Schluss, dass die hier gefundene zeitliche Dynamik des Blickrichtungsnacheffekts Adaptationsprozesse auf höheren Schichten der visuellen Informationsverarbeitung als die zugrunde liegenden Mechanismen nahe legt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of next generation microwave technology for backhauling systems is driven by an increasing capacity demand. In order to provide higher data rates and throughputs over a point-to-point link, a cost-effective performance improvement is enabled by an enhanced energy-efficiency of the transmit power amplification stage, whereas a combination of spectrally efficient modulation formats and wider bandwidths is supported by amplifiers that fulfil strict constraints in terms of linearity. An optimal trade-off between these conflicting requirements can be achieved by resorting to flexible digital signal processing techniques at baseband. In such a scenario, the adaptive digital pre-distortion is a well-known linearization method, that comes up to be a potentially widely-used solution since it can be easily integrated into base stations. Its operation can effectively compensate for the inter-modulation distortion introduced by the power amplifier, keeping up with the frequency-dependent time-varying behaviour of the relative nonlinear characteristic. In particular, the impact of the memory effects become more relevant and their equalisation become more challenging as the input discrete signal feature a wider bandwidth and a faster envelope to pre-distort. This thesis project involves the research, design and simulation a pre-distorter implementation at RTL based on a novel polyphase architecture, which makes it capable of operating over very wideband signals at a sampling rate that complies with the actual available clock speed of current digital devices. The motivation behind this structure is to carry out a feasible pre-distortion for the multi-band spectrally efficient complex signals carrying multiple channels that are going to be transmitted in near future high capacity and reliability microwave backhaul links.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[1] The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.