879 resultados para mediators, NO
Resumo:
The primary focus of this study was to asses the impact of selected antecedent variables namely Psychological Empowerment at Work (PEW), Psychological Contract Violation (PCV), Work Life Balance (WLB), Job Satisfaction (JS) and Affective Organisational Commitment (AOC) on Managerial Performance (MP) of middle level managers of private sector manufacturing and service sector organisations in Kerala.The study brings out the significance of Job Attitudes namely Job Satisfaction and Affective Organisational Commitment in meaningfully explaining the linkage between the rest of the antecedent variables in the study and Managerial Performance. The study interestingly revealed that Job Attitudes play a mediating role in explaining performance of managers unlike visualised in the initial conceptual framework. The study points to the importance of taking care of job attitudes in the work place to ensure performance of managers. The result of the study also brings out the significance of maintaining work-life balance especially in service sector organisations because it will have a direct impact on the level of performance of managers than most of the other contextual factors. Hence, it is the responsibility of HR department to initiate activities which are customised to the collective aspirations of the members of respective organisations to ensure positive job attitudes. HR departments should advice and convince the top management to provide resource support and endorsement to such initiatives.
Resumo:
In this review we evaluate the cognitive and neural effects of positive and negative mood on executive function. Mild manipulations of negative mood appear to have little effect on cognitive control processes, whereas positive mood impairs aspects of updating, planning and switching. These cognitive effects may be linked to neurochemistry: with positive mood effects mediated by dopamine while negative mood effects may be mediated by serotonin levels. Current evidence on the effects of mood on regional brain activity during executive functions, indicates that the prefrontal cortex is a recurrent site of integration between mood and cognition. We conclude that there is a disparity between the importance of this topic and awareness of how mood affects, executive functions in the brain. Most behavioural and neuroimaging studies of executive function in normal samples do not explore the potential role of variations in mood, yet the evidence we outline indicates that even mild fluctuations in mood can have a significant influence on neural activation and cognition. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
To investigate sources of influences connecting mothers' and their children's anxious cognitions, 65 children (aged 10 to 11 years) completed self-report measures of anxiety. Children and mothers responded to an ambiguous scenario questionnaire and measures of parenting style and life events. Mothers also reported expectations about their child's reaction to ambiguous situations. Mothers' and children's threat cognitions were significantly correlated (r = .31), and partially mediated by mothers' expectations about their child. Mothers' anticipated distress was associated with expectations for their child's distress, which was associated with the child's own anticipated distress. Parenting and life events were significantly associated with children's interpretative bias, but did not mediate the intergenerational association in interpretative bias. The results suggest influences on children's 'anxious cognitive style' and potential targets for preventing and reducing maladaptive cognitions in children.
Resumo:
The addition of oligofructose as a dietary fiber decreases the serum concentration and the hepatic release of VLDL-triglycerides in rats. Because glucose, insulin, insulin-like growth factor I (IGF-I) and gut peptides [i.e., glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)]) are factors involved in the metabolic response to nutrients, this paper analyzes their putative role in the hypolipidemic effect of oligofructose. Male Wistar rats were fed a nonpurified diet with or without 10% oligofructose for 30 d. Glucose, insulin, IGF-I and GIP concentrations were measured in the serum of rats after eating. GIP and GLP-1 contents were also assayed in small intestine and cecal extracts, respectively. A glucose tolerance test was performed in food-deprived rats. Serum insulin level was significantly lower in oligofructose-fed rats both after eating and in the glucose tolerance test, whereas glycemia was lower only in the postprandial state. IGF-I serum level did not differ between groups. GIP concentration was significantly higher in the serum of oligofructose-fed rats. The GLP-1 cecal pool was also significantly higher. In this study, we have shown that cecal proliferation induced by oligofructose leads to an increase in GLP-1 concentration. This latter incretin could be involved in the maintenance of glycemia despite a lower insulinemia in the glucose tolerance test in oligofructose-fed rats. We discuss also the role of hormonal changes in the antilipogenic effect of oligofructose.
Resumo:
The C-type lectin-like receptor 2 (CLEC-2) activates platelets through Src and Syk tyrosine kinases via a single cytoplasmic YxxL motif known as a hem immunoreceptor tyrosine-based activation motif (hemITAM). Here, we demonstrate using sucrose gradient ultracentrifugation and methyl-beta-cyclodextrin treatment that CLEC-2 translocates to lipid rafts upon ligand engagement and that translocation is essential for hemITAM phosphorylation and signal initiation. HemITAM phosphorylation, but not translocation, is also critically dependent on actin polymerization, Rac1 activation, and release of ADP and thromboxane A(2) (TxA(2)). The role of ADP and TxA(2) in mediating phosphorylation is dependent on ligand engagement and rac activation but is independent of platelet aggregation. In contrast, tyrosine phosphorylation of the GPVI-FcRgamma-chain ITAM, which has 2 YxxL motifs, is independent of actin polymerization and secondary mediators. These results reveal a unique series of proximal events in CLEC-2 phosphorylation involving actin polymerization, secondary mediators, and Rac activation.
Resumo:
Crotoxin is the main neurotoxic component of Crotalus durissus terrificus snake venom and modulates immune and inflammatory responses, interfering with the activity of leukocytes. In the present work, the effects of crotoxin on the number of blood and lymphatic leukocytes and on lymph nodes and spleen lymphocytes population were investigated. The toxin s.c. administered to male Wistar rats, decreases the number of lymphocytes in blood and lymph circulation and increases the content of B and T-lymphocytes in lymph nodes. These effects were detected 1-2 h after treatment. The crotoxin molecule is composed of two subunits, an acidic non-toxic polypeptide, named crotapotin and a toxic basic phospholipase A(2) (PLA(2)). PLA(2), but not crotapotin, decreased the number of circulating blood and lymph lymphocytes. Crotoxin promotes leukocyte adherence to endothelial cells of blood microcirculation and to lymph node high endothelial venules, which might contribute to the drop in the number of circulating lymphocytes. Crotoxin increases expression of the adhesion molecule LFA-1 in lymphocytes. The changes in the expression of the adhesion molecule might contribute, at least in part, for the increased leukocyte adhesion to endothelium. Zileuton, a 5-lipoxygenase inhibitor, blocked the decrease in the number of circulating leukocytes induced by crotoxin and also abolished the changes observed in leukocyte-endothelial interactions, suggesting the involvement of lipoxygenase-derived mediators in the effects of the toxin. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective We investigated the effects of high-fat diet-induced obesity on vascular proinflammatory factors and oxidative stress on endothelium-dependent relaxation of the aorta. Methods Female Swiss mice were submitted to a high-fat diet for 16 weeks. At the end of the experimental period, we evaluated blood pressure, relaxation in response to acetylcholine in aortic rings in the absence and the presence of the superoxide anion scavenger, superoxide dismutase (SOD, 150 U/ml), and the nuclear factor (NF)-kappa B inhibitor, sodium salicylate (5 mmol/l). Aortic protein expression of endothelial nitric oxide synthase, Cu/Zn-SOD, NF-kappa B, I kappa B-alpha, and proinflammatory cytokines were also evaluated. Results Obese mice presented higher systolic and diastolic blood pressure than control mice (P<0.05). The relaxation of aortas to acetylcholine, but not to sodium nitroprusside, was significantly decreased in obese mice and was corrected by both SOD and sodium salicylate (P<0.05). The protein expression of endothelial nitric oxide synthase and Cu/Zn-SOD was significantly decreased in aorta from obese mice (P<0.05). Total p65 NF-kappa B subunit protein expression was not affected by obesity, but the protein expression of NF-kappa B inhibitor I kappa B-alpha was lower in aorta from obese mice (P<0.05). There were no significant differences in the interleukin (IL)-1 beta and IL-6 protein expression between groups. In contrast, the expression of TNF-alpha was significantly increased in aortas from obese mice. Conclusion Our resultssuggest that the reducedantioxidant defense and the local NF-kappa B pathway play an important role in the impairment of endothelium-dependent relaxation in aorta from obese mice. J Hypertens 28: 2111-2119 (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Short chain fatty acids (SCFAs) are fermentation products of anaerobic bacteria. More than just being an important energy source for intestinal epithelial cells, these compounds are modulators of leukocyte function and potential targets for the development of new drugs. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate and butyrate) on production of nitric oxide (NO) and proinflammatory cytokines [tumor necrosis factor alpha (TNF-alpha) and cytokine-induced neutrophil chemoattractant-2 (CINC-2 alpha beta)] by rat neutrophils. The involvement of nuclear factor kappa B (NF-kappa B) and histone deacetylase (HDAC) was examined. The effect of butyrate was also investigated in vivo after oral administration of tributyrin (a pro-drug of butyrate). Propionate and butyrate diminished TNF-alpha, CINC-2 alpha beta and NO production by LPS-stimulated neutrophils. We also observed that these fatty acids inhibit HDAC activity and NF-kappa B activation, which might be involved in the attenuation of the LPS response. Products of cyclooxygenase and 5-lipoxygenase are not involved in the effects of SCFAs as indicated by the results obtained with the inhibitors of these enzymes. The recruitment of neutrophils to the peritonium after intraperitoneal administration of a glycogen solution (1%) and the ex vivo production of cytokines and NO by neutrophils were attenuated in rats that previously received tributyrin. These results argue that this triglyceride may be effective in the treatment of inflammatory conditions. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
The aim of the present study was to evaluate the effect of overstimulation of beta-adrenoceptors on vascular inflammatory mediators. Wistar rats were treated with the beta-adrenoceptor agonist isoproterenol (0.3 mg(.)kg(-1.)day(-1) sc) or vehicle (control) for 7 days. At the end of treatment, the right carotid artery was catheterized for arterial and left ventricular (LV) hemodynamic evaluation. Isoproterenol treatment increased LV weight but did not change hemodynamic parameters. Aortic mRNA and protein expression were quantified by real-time RT-PCR and Western blot analysis, respectively. Isoproterenol enhanced aortic mRNA and protein expression of IL-1 beta (124% and 125%) and IL-6 (231% and 40%) compared with controls but did not change TNF-alpha expression. The nuclear-to-cytoplasmatic protein expression ration of the NF-beta B p65 subunit was increased by isoproterenol treatment (51%); in addition, it reduced the cytoplasmatic expression of I kappa B-alpha (52%) in aortas. An electrophoretic mobility shift assay was performed using the aorta, and increased NF-kappa B DNA binding (31%) was observed in isoproterenol-treated rats compared with controls (P < 0.05). Isoproterenol treatment increased phenylephrine-induced contraction in aortic rigs (P < 0.05), which was significantly reduced by superoxide dismutase (150 U/ml) and sodium salicylate (5 mM). Cotreatment with thalidomide (150 mg(.)kg(-1.)day(-1) for 7 days) also reduced hyperreactivity to phenylephrine induced by isoproterenol. In conclusion, overstimulation of beta-adrenoceptors increased proinflammatory cytokines and upregulated NF-kappa B in the rat aorta. Moreover, local oxidative stress and the proinflammatory state seem to play key roles in the altered vascular reactivity of the rat aorta induced by chronic beta-adrenergic stimulation.
Resumo:
Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Diabetic patients are more susceptible to infections, and their inflammatory response is impaired. This is restored by insulin treatment. In the present study, we investigated the effect of insulin on LPS-induced signaling pathways and mediators in the lung of diabetic rats. Diabetic male Wistar rats (alloxan, 42 mg/kg i.v., 10 days) and control rats received intratracheal instillation of LPS (750 mu g/0.4 mL) or saline. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU s.c.) 2 h before LPS. After 6 h, bronchoalveolar lavage was performed for the release of mediators, and lung tissue was homogenized for analysis of LPS-induced signaling pathways. Relative to control rats, diabetic rats exhibited a significant reduction in the LPS-induced phosphorylation of extracellular signal-regulated kinase (64%), p38 (70%), protein kinase B (67%), and protein kinase C alpha (57%) and delta (65%) and in the expression of iNOS (32%) and cyclooxygenase 2 (67%) in the lung homogenates. The bronchoalveolar lavage fluid concentrations of NO (47%) and IL-6 (49%) were also reduced in diabetic rats, whereas the cytokine-induced neutrophil chemoattractant 2 (CINC-2) levels were increased 23%, and CINC-1 was not different from control animals. Treatment of diabetic rats with insulin completely or partially restored all these parameters. In conclusion, data presented show that insulin regulates mitogen-activated protein kinase, phosphatidylinositol 3`-kinase, protein kinase C pathways, expression of the inducible enzymes, cyclooxygenase 2 and iNOS, and levels of IL-6 and CINC-2 in LPS-induced lung inflammation in diabetic rats. These results suggest that the protective effect of insulin in sepsis could be due to modulation of cellular signal transduction factors.