904 resultados para mechanical contact


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuel Cells are a promising alternative energy technology. One of the biggest problems that exists in fuel cell is that of water management. A better understanding of wettability characteristics in the fuel cells is needed to alleviate the problem of water management. Contact angle data on gas diffusion layers (GDL) of the fuel cells can be used to characterize the wettability of GDL in fuel cells. A contact angle measurement program has been developed to measure the contact angle of sessile drops from drop images. Digitization of drop images induces pixel errors in the contact angle measurement process. The resulting uncertainty in contact angle measurement has been analyzed. An experimental apparatus has been developed for contact angle measurements at different temperature, with the feature to measure advancing and receding contact angles on gas diffusion layers of fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In modern medico-legal literature, only a small number of publications deal with fatal injuries from black powder guns. Most of them focus on the morphological features such as intense soot soiling, blast tattooing and burn effects in close-range shots or describe the wound ballistics of spherical lead bullets. Another kind of "unusual" and potentially lethal weapons are handguns destined for firing only blank cartridges such as starter and alarm pistols. The dangerousness of these guns is restricted to very close and contact range shots and results from the gas jet produced by the deflagration of the propellant. The present paper reports on a suicide committed with a muzzle-loading percussion pistol cal. 45. An unusually large stellate entrance wound was located in the precordial region, accompanied by an imprint mark from the ramrod and a faint greenish discoloration (apparently due to the formation of sulfhemoglobin). Autopsy revealed an oversized powder cavity, multiple fractures of the anterior thoracic wall as well as ruptures of the heart, the aorta, the left hepatic lobe and the diaphragm. In total, the zone of mechanical destruction had a diameter of approx. 15 cm. As there was no exit wound and no bullet lodged in the body, the injury was caused exclusively by the inrushing combustion gases of the propellant (black powder) comparable with the gas jet of a blank cartridge gun. In contact shots to ballistic gelatine using the suicide's pistol loaded with black powder but no projectile, the formation of a nearly spherical cavity could be demonstrated by means of a high-speed camera. The extent of the temporary cavity after firing with 5 g of black powder roughly corresponded to the zone of destruction found in the suicide's body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microindentation in bone is a micromechanical testing technique routinely used to extract material properties related to bone quality. As the analysis of microindentation data is based on assumptions about the contact between sample and surface, the aim of this study was to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topology was measured by atomic force microscopy. Statistical shape modeling of the residual imprint allowed to define a mean shape and to describe the variability in terms of 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was found to be highly consistent and free of any pile up while differing mostly by depth between species and direction. A few of the topological parameters, in particular depth, showed significant but rather weak and inconsistent correlations to variations in mechanical properties. The mechanical response of bone as well as the residual imprint shape was highly consistent within each category. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small deviations from an ideally flat surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The critical conditions for hydrogenembrittlement (HE) risk of highstrengthgalvanizedsteel (HSGS) wires and tendons exposed to alkaline concrete pore solutions have been evaluated by means of electrochemical and mechanical testing. There is a relationship between the hydrogenembrittlementrisk in HSGS and the length of hydrogen evolution process in alkalinemedia. The galvanizedsteel suffers anodic dissolution simultaneously to the hydrogen evolution which does not stop until the passivation process is completed. HSGS wires exposed to a very highalkalinemedia have showed HE risk with loss in mechanical properties only if long periods with hydrogen evolution process take place with a simultaneous intensive galvanized coating reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to determine the critical wear levels of the contact wire of the catenary on metropolitan lines. The study has focussed on the zones of contact wire where localised wear is produced, normally associated with the appearance of electric arcs. To this end, a finite element model has been developed to study the dynamics of pantograph-catenary interaction. The model includes a zone of localised wear and a singularity in the contact wire in order to simulate the worst case scenario from the point of view of stresses. In order to consider the different stages in the wire wear process, different depths and widths of the localised wear zone were defined. The results of the dynamic simulations performed for each stage of wear let the area of the minimum resistant section of the contact wire be determined for which stresses are greater than the allowable stress. The maximum tensile stress reached in the contact wire shows a clear sensitivity to the size of the local wear zone, defined by its width and depth. In this way, if the wear measurements taken with an overhead line recording vehicle are analysed, it will be possible to calculate the potential breakage risk of the wire. A strong dependence of the tensile forces of the contact wire has also been observed. These results will allow priorities to be set for replacing the most critical sections of wire, thereby making maintenance much more efficient. The results obtained show that the wire replacement criteria currently borne in mind have turned out to be appropriate, although in some wear scenarios these criteria could be adjusted even more, and so prolong the life cycle of the contact wire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we have presented some studies concerning the analysis, design and optimization of one experimental device developed in the UK - GPTAD - which has been designed to remove blood clots without the need to make contact with the clot itself, thereby potentially reducing the risk of problems such as downstream embolisation. Based on the idea of a modification of the previous device, in this work, we present a model based in the use of stents like the SolitaireTM FR, which is in contact with the clot itself. In the case of such devices, the stent is self-expandable and the extraction of the blood clot is faciliatated by the stent, which must be inside the clot. Such stents are generally inserted in position by using the guidewire inserted into the catheter. This type of modeling could potentially be useful in showing how the blood clot is moved by the various different forces involved. The modelling has been undertaken by analyzing the resistances, compliances and inertances effects. We model an artery and blood clot for range of forces for the guidewire. In each case we determine the interaction between blood clot, stent and artery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EWT back contact solar cells are manufactured from very thin silicon wafers. These wafers are drilled by means of a laser process creating a matrix of tiny holes with a density of approximately 125 holes per square centimeter. Their influence in the stiffness and mechanical strength has been studied. To this end, both wafers with and without holes have been tested with the ring on ring test. Numerical simulations of the tests have been carried out through the Finite Element Method taking into account the non-linearities present in the tests. It's shown that one may use coarse meshes without holes to simulate the test and after that sub models are used for the estimation of the stress concentration around the holes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of high-speed bridges at resonance, particularly under flexural vibrations, constitutes a subject of research for many scientists and engineers at the moment. The topic is of great interest because, as a matter of fact, such kind of behaviour is not unlikely to happen due to the elevated operating speeds of modern rains, which in many cases are equal to or even exceed 300 km/h ( [1,2]). The present paper addresses the subject of the evolution of the wheel-rail contact forces during resonance situations in simply supported bridges. Based on a dimensionless formulation of the equations of motion presented in [4], very similar to the one introduced by Klasztorny and Langer in [3], a parametric study is conducted and the contact forces in realistic situations analysed in detail. The effects of rail and wheel irregularities are not included in the model. The bridge is idealised as an Euler-Bernoulli beam, while the train is simulated by a system consisting of rigid bodies, springs and dampers. The situations such that a severe reduction of the contact force could take place are identified and compared with typical situations in actual bridges. To this end, the simply supported bridge is excited at resonace by means of a theoretical train consisting of 15 equidistant axles. The mechanical characteristics of all axles (unsprung mass, semi-sprung mass, and primary suspension system) are identical. This theoretical train permits the identification of the key parameters having an influence on the wheel-rail contact forces. In addition, a real case of a 17.5 m bridges traversed by the Eurostar train is analysed and checked against the theoretical results. The influence of three fundamental parameters is investigated in great detail: a) the ratio of the fundamental frequency of the bridge and natural frequency of the primary suspension of the vehicle; b) the ratio of the total mass of the bridge and the semi-sprung mass of the vehicle and c) the ratio between the length of the bridge and the characteristic distance between consecutive axles. The main conclusions derived from the investigation are: The wheel-rail contact forces undergo oscillations during the passage of the axles over the bridge. During resonance, these oscillations are more severe for the rear wheels than for the front ones. If denotes the span of a simply supported bridge, and the characteristic distance between consecutive groups of loads, the lower the value of , the greater the oscillations of the contact forces at resonance. For or greater, no likelihood of loss of wheel-rail contact has been detected. The ratio between the frequency of the primary suspension of the vehicle and the fundamental frequency of the bridge is denoted by (frequency ratio), and the ratio of the semi-sprung mass of the vehicle (mass of the bogie) and the total mass of the bridge is denoted by (mass ratio). For any given frequency ratio, the greater the mass ratio, the greater the oscillations of the contact forces at resonance. The oscillations of the contact forces at resonance, and therefore the likelihood of loss of wheel-rail contact, present a minimum for approximately between 0.5 and 1. For lower or higher values of the frequency ratio the oscillations of the contact forces increase. Neglecting the possible effects of torsional vibrations, the metal or composite bridges with a low linear mass have been found to be the ones where the contact forces may suffer the most severe oscillations. If single-track, simply supported, composite or metal bridges were used in high-speed lines, and damping ratios below 1% were expected, the minimum contact forces at resonance could drop to dangerous values. Nevertheless, this kind of structures is very unusual in modern high-speed railway lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production of back contact solar cells requires holes generations on the wafers to keep both positive and negative contacts on the back side of the cell. This drilling process weakens the wafer mechanically due to the presence of the holes and the damage introduced during the process as microcracks. In this study, several chemical processes have been applied to drilled wafers in order to eliminate or reduce the damage generated during this fabrication step. The treatments analyzed are the followings: alkaline etching during 1, 3 and 5 minutes, acid etching for 2 and 4 minutes and texturisation. To determine mechanical strength of the samples a common mechanical study has been carried out testing the samples by the Ring on Ring bending test and obtaining the stress state in the moment of failure by FE simulation. Finally the results obtained for each treatment were fitted to a three parameter Weibull distribution

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behavior of living murine T-lymphocytes was assessed by atomic force microscopy (AFM). A robust experimental procedure was developed to overcome some features of lymphocytes, in particular their spherical shape and non-adherent character. The procedure included the immobilization of the lymphocytes on amine-functionalized substrates, the use of hydrodynamic effects on the deflection of the AFM cantilever to monitor the approaching, and the use of the jumping mode for obtaining the images. Indentation curves were analyzed according to Hertz's model for contact mechanics. The calculated values of the elastic modulus are consistent both when considering the results obtained from a single lymphocyte and when comparing the curves recorded from cells of different specimens

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanically stressed cells display increased levels of fos message and protein. Although the intracellular signaling pathways responsible for FOS induction have been extensively characterized, we still do not understand the nature of the primary cell mechanotransduction event responsible for converting an externally acting mechanical stressor into an intracellular signal cascade. We now report that plasma membrane disruption (PMD) is quantitatively correlated on a cell-by-cell basis with fos protein levels expressed in mechanically injured monolayers. When the population of PMD-affected cells in injured monolayers was selectively prevented from responding to the injury, the fos response was completely ablated, demonstrating that PMD is a requisite event. This PMD-dependent expression of fos protein did not require cell exposure to cues inherent in release from cell–cell contact inhibition or presented by denuded substratum, because it also occurred in subconfluent monolayers. Fos expression also could not be explained by factors released through PMD, because cell injury conditioned medium failed to elicit fos expression. Translocation of the transcription factor NF-κB into the nucleus may also be regulated by PMD, based on a quantitative correlation similar to that found with fos. We propose that PMD, by allowing a flux of normally impermeant molecules across the plasma membrane, mediates a previously unrecognized form of cell mechanotransduction. PMD may thereby lead to cell growth or hypertrophy responses such as those that are present normally in mechanically stressed skeletal muscle and pathologically in the cardiovascular system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in single molecule manipulation methods offer a novel approach to investigating the protein folding problem. These studies usually are done on molecules that are naturally organized as linear arrays of globular domains. To extend these techniques to study proteins that normally exist as monomers, we have developed a method of synthesizing polymers of protein molecules in the solid state. By introducing cysteines at locations where bacteriophage T4 lysozyme molecules contact each other in a crystal and taking advantage of the alignment provided by the lattice, we have obtained polymers of defined polarity up to 25 molecules long that retain enzymatic activity. These polymers then were manipulated mechanically by using a modified scanning force microscope to characterize the force-induced reversible unfolding of the individual lysozyme molecules. This approach should be general and adaptable to many other proteins with known crystal structures. For T4 lysozyme, the force required to unfold the monomers was 64 ± 16 pN at the pulling speed used. Refolding occurred within 1 sec of relaxation with an efficiency close to 100%. Analysis of the force versus extension curves suggests that the mechanical unfolding transition follows a two-state model. The unfolding forces determined in 1 M guanidine hydrochloride indicate that in these conditions the activation barrier for unfolding is reduced by 2 kcal/mol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied experimentally jump-to-contact (JC) and jump-out-of-contact (JOC) phenomena in gold electrodes. JC can be observed at first contact when two metals approach each other, while JOC occurs in the last contact before breaking. When the indentation depth between the electrodes is limited to a certain value of conductance, a highly reproducible behaviour in the evolution of the conductance can be obtained for hundreds of cycles of formation and rupture. Molecular dynamics simulations of this process show how the two metallic electrodes are shaped into tips of a well-defined crystallographic structure formed through a mechanical annealing mechanism. We report a detailed analysis of the atomic configurations obtained before contact and rupture of these stable structures and obtained their conductance using first-principles quantum transport calculations. These results help us understand the values of conductance obtained experimentally in the JC and JOC phenomena and improve our understanding of atomic-sized contacts and the evolution of their structural characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical response of the cornea subjected to a non-contact air-jet tonometry diagnostic test represents an interplay between its geometry, the corneal material behavior and the loading. The objective is to study this interplay to better understand and interpret the results obtained with a non-contact tonometry test. A patient-specific finite element model of a healthy eye, accounting for the load free configuration, was used. The corneal tissue was modeled as an anisotropic hyperelastic material with two preferential directions. Three different sets of parameters within the human experimental range obtained from inflation tests were considered. The influence of the IOP was studied by considering four pressure levels (10–28 mmHg) whereas the influence of corneal thickness was studied by inducing a uniform variation (300–600 microns). A Computer Fluid Dynamics (CFD) air-jet simulation determined pressure loading exerted on the anterior corneal surface. The maximum apex displacement showed a linear variation with IOP for all materials examined. On the contrary, the maximum apex displacement followed a cubic relation with corneal thickness. In addition, a significant sensitivity of the apical displacement to the corneal stiffness was also obtained. Explanation to this behavior was found in the fact that the cornea experiences bending when subjected to an air-puff loading, causing the anterior surface to work in compression whereas the posterior surface works in tension. Hence, collagen fibers located at the anterior surface do not contribute to load bearing. Non-contact tonometry devices give useful information that could be misleading since the corneal deformation is the result of the interaction between the mechanical properties, IOP, and geometry. Therefore, a non-contact tonometry test is not sufficient to evaluate their individual contribution and a complete in-vivo characterization would require more than one test to independently determine the membrane and bending corneal behavior.