860 resultados para mathematical conceptions
Resumo:
Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.
Resumo:
In this article we explore young children's development of mathematical knowledge and reasoning processes as they worked two modelling problems (the Butter Beans Problem and the Airplane Problem). The problems involve authentic situations that need to be interpreted and described in mathematical ways. Both problems include tables of data, together with background information containing specific criteria to be considered in the solution process. Four classes of third-graders (8 years of age) and their teachers participated in the 6-month program, which included preparatory modelling activities along with professional development for the teachers. In discussing our findings we address: (a) Ways in which the children applied their informal, personal knowledge to the problems; (b) How the children interpreted the tables of data, including difficulties they experienced; (c) How the children operated on the data, including aggregating and comparing data, and looking for trends and patterns; (c) How the children developed important mathematical ideas; and (d) Ways in which the children represented their mathematical understandings.
Resumo:
The focus of this study is the phenomenon of teams and teamwork. Currently the Professional Standards of Queensland’s teachers state that teams are critical to teachers’ work. This study uses a phenomenographic approach to investigate science teachers’ conceptions of teams and teamwork in the science departments of fifteen Queensland State secondary schools. The research identifies eight conceptions of teams and teamwork. The research findings suggest that the team represents a collective of science teachers bounded by the Science Department and their current timetabled subject. Collaboration was found in the study to be an activity that occurred between teachers in the same social space. The research recognises a new category of relationship between teachers, designated as ‘ask-and-receive’. The research identifies a lack of teamwork within the science department and the school. There appears to be no teaming with other subject departments. The research findings highlight the non-supportive team and teamwork policies, procedures and structures in the schools and identify the lack of recognition of the specialised skills of science teachers. The implications for the schools and science teachers are considerable, as the current Professional Standards of Education Queensland and the Queensland College of Teachers provide benchmarks of knowledge and practice of teams and teamwork for teachers. The research suggests that the professional standards relating to teams and teamwork cannot be achieved in the present school environment.
Resumo:
A mathematical model is developed to simulate the discharge of a LiFePO4 cathode. This model contains 3 size scales, which match with experimental observations present in the literature on the multi-scale nature of LiFePO4 material. A shrinking-core is used on the smallest scale to represent the phase-transition of LiFePO4 during discharge. The model is then validated against existing experimental data and this validated model is then used to investigate parameters that influence active material utilisation. Specifically the size and composition of agglomerates of LiFePO4 crystals is discussed, and we investigate and quantify the relative effects that the ionic and electronic conductivities within the oxide have on oxide utilisation. We find that agglomerates of crystals can be tolerated under low discharge rates. The role of the electrolyte in limiting (cathodic) discharge is also discussed, and we show that electrolyte transport does limit performance at high discharge rates, confirming the conclusions of recent literature.
Resumo:
Integrated social education in Australia is a divisive educational issue. The last decade has been marked by a controversial integrated social studies curriculum called Studies of Society and Environment (SOSE) where history, geography and environmental studies were integrated with civics and citizenship. The introduction of a compulsory K-10 Australian Curriculum from 2011, however, marks the return to history and geography and the abandonment of SOSE. Curriculum reform aside, what do teachers think is essential knowledge for middle years social education? The paper reports on a phenomenographical exploration of thirty-one middle school teachers’ conceptions of essential knowledge for SOSE. Framed by Shulman’s (1986, 1987) theoretical framework of the knowledge base for teaching, the research identified seven qualitatively different ways of understanding essential knowledge for integrated social education. The study indicates a practice-based theorization of integrated social education that justifies attention to disciplinary process and teacher identity in middle school social education.