996 resultados para macrophage activation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The architectural and infiltrate pattern of liver human visceral leishmaniasis (HVL) have been systematically classified as typical, fibrogenic or nodular. Despite this histopathological classification, the immune response based on cytokines and cellular phenotypes have never been performed. The aim of this study was to determine the immunophenotypic pattern and cytokine profile of the nodular involvement of the Liver in HVL. We evaluated nine cases of the nodular form of HVL. In situ immune response was studied through cytokine analysis and immunohistochemical study for phenotype markers: IL-1, IL-4, IL-1 0, TNF-alpha, IFN-gamma, CD4+ T cells, CD8+ T cells, CD20, CD68, CD57 and macrophage activation was determined by evaluation of iNOS activity. HVL seems to be related to a better immune response. Amastigotes were rarely found on liver sections. Leishmania antigen expression was also rare and located in the inflammatory nodules. The lower expression of IL-4 and IL-10, moderate expression of TNF-alpha and IFN-gamma demonstrate a panorama of Th1 phenotype. The increased expression of NK cells could help in sustaining this model of response. This pattern of immune response is probably responsible for improvement in the parasite`s clearance from liver tissue and it is a prognostic marker of human visceral leishmaniasis. (C) 2008 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we investigated the effect of 8-Bromoguanosine, an immunostimulatory compound, on the cytotoxicity of macrophages against Leishmania amazonensis in an in vitro system. The results showed that macrophages treated with 8-Bromoguanosine before or after infection are capable to reduce parasite load, as monitored by the number of amastigotes per macrophage and the percentage of infected cells (i.e. phagocytic index). Since 8-Bromoguanosine was not directly toxic to the promastigotes, it was concluded that the ribonucleoside induced macrophage activation. Presumably, 8-Bromoguanosine primed macrophages by inducing interferon alpha and beta which ultimately led to L. amazonensis amastigote killing. The results suggest that guanine ribonucleosides may be useful to treat infections with intracellular pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leishmaniasis is a typical parasite infection whose protective immunity depends on macrophage activation. Susceptibility to Leishmania donovani infection was compared in H (high antibody responder) and L (low antibody responder) mice from selection IV-A. H mice infected intravenously with 10(7) amastigotes of L. donovani were more susceptible to infection than their L counterparts. This higher susceptibility was characterized by a higher splenic and hepatic parasite burden. An increased splenic index was observed in both lines after sixty days of infection. This splenomegaly was caused, at least partially, by an increase in the number of splenic cells as determined by direct counts of cells from spleen. The results show that selection IV-A is susceptible to visceral leishmaniasis, with the H line being more susceptible than the L line.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gas6 downregulates the activation state of macrophages and thereby their production of proinflammatory cytokines induced by various stimuli. We aimed to determine whether Gas6 is involved in sepsis. We measured Gas6 plasma levels in 13 healthy subjects, 29 patients with severe sepsis, and 18 patients with non-infectious inflammatory diseases. Gas6 level was higher in septic patients than in control groups (P 0.0001). The sensitivity and specificity of Gas6 levels to predict fatal outcome were 83% and 88%. We next investigated whether Gas6 affects cytokine production and outcome in experimental models of endotoxemia and peritonitis in wild-type (WT) and Gas6-/- mice. Circulating levels of Gas6 after LPS 25mg/kg i.p. peaked at 1 hour (P<0.001). Similarly, TNF- was higher in Gas6-/- than in WT mice 1 hour after LPS (P<0.05). Furthermore, 62 anti- and pro-inflammatory cytokines were quantified in plasma after LPS injection. Their levels were globally higher in Gas6-/- plasma after LPS, 47/62 cytokines being at least 50% higher in Gas6-/- than in WT plasma after 1 hour. Mortality induced by 25mg/kg LPS was 25% in WT versus 87% in Gas6-/- mice (P<0.05). LPS-induced mortality in Gas6 receptors Axl-/-, Tyro3-/- and Merkd was also enhanced when compared to WT mice (P<0.001). In peritonitis models (cecal ligation and puncture, CLP, and i.p. injection of E. coli), Gas6 plasma levels increased and remained elevated at least 24 hours. CLP increased mortality in Gas6-/- mice. Finally, we explored the role of Gas6 in LPS-treated macrophages. We found that Gas6 was released by LPS-stimulated WT macrophages and that Gas6-/- macrophages produced more TNF- and IL-6 than WT macrophages. Cytokine release by Gas6-/- macrophages was higher than by WT macrophages (cytokine array). Adjunction of recombinant Gas6 to the culture medium of Gas6-/- macrophages diminished the cytokine production to WT levels. In LPS-treated Gas6-/- macrophages, Akt and Erk1/2 phosphorylation was reduced whereas p38 and NF B activation was enhanced. Thus, in septic patients, elevated Gas6 levels were associated with fatal outcome. In mice, they raised in experimental endotoxemia and peritonitis models, and correlated also with sepsis severity. However, Gas6-/- mice survival in these models was reduced compared to WT. Gas6 secreted by macrophages in response to LPS activated Akt and restrained p38 and NF B activation, thereby dampening macrophage activation. Altogether these data suggest that, during endotoxemia, Gas6-/- mice phenotype resembles that of mice which have undergone PI3K inhibition, indicating that Gas6 is a major modulator of innate immunity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In C57Bl/6 strain mice vaccinated with radiation-attenuated cercariae of Schistosoma mansoni immune elimination of challenge parasites occurs in the lungs. Leococytes were recovered from the lungs of such mice by bronchoalveolar lavage and cultured in vitro with larval antigen; the profile of cytokines released was then analyzed. From 14 days after vaccination, BAL cultures contained infiltrating lymphocytes wich produced abundant quantitties of IFN-g and IL-3. Challenge of vaccinated mice resulted in a second influx of IFN-g nd IL-3- producing cells, earlier than after vaccination or in the appropriate contropls. Ablation studies revealed that CD4+ T cells were the source of IFN-g. The timing of cytokine production after vaccination, and challenge was coincident with the phases of macrophage activation previously reported. At no time could lymphocytes in BAL cultures to stimulated to proliferate with either larval Ag or mitogen, in contrast to splenocytes from the same mice. Furthermore, T cell growth factor activity was not detected in BAL cultures stimulated with Ag. We suggest that the lymphocytes recruited to the lungs are memory/effector cells, When Ag. released challenge schistosomula is presented to these cells, they respond by secreting cytokines wich mediate the formation of cellular aggregates around the parasites, blocking their onward migration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Replacement of the hyperimmune anti-Rhesus (Rh) D immunoglobulin, currently used to prevent haemolytic disease of the newborn, by fully recombinant human anti-RhD antibodies would solve the current logistic problems associated with supply and demand. The combination of phage display repertoire cloning with precise selection procedures enables isolation of specific genes that can then be inserted into mammalian expression systems allowing production of large quantities of recombinant human proteins. With the aim of selecting high-affinity anti-RhD antibodies, two human Fab libraries were constructed from a hyperimmune donor. Use of a new phage panning procedure involving bromelin-treated red blood cells enabled the isolation of two high-affinity Fab-expressing phage clones. LD-6-3 and LD-6-33, specific for RhD. These showed a novel reaction pattern by recognizing the D variants D(III), D(IVa), D(IVb), D(Va), D(VI) types I and II. D(VII), Rh33 and DFR. Full-length immunoglobulin molecules were constructed by cloning the variable regions into expression vectors containing genomic DNA encoding the immunoglobulin constant regions. We describe the first, stable, suspension growth-adapted Chinese hamster ovary (CHO) cell line producing a high affinity recombinant human IgG1 anti-RhD antibody adapted to pilot-scale production. Evaluation of the Fc region of this recombinant antibody by either chemiluminescence or antibody-dependent cell cytotoxicity (ADCC) assays demonstrated macrophage activation and lysis of red blood cells by human lymphocytes. A consistent source of recombinant human anti-RhD immunoglobulin produced by CHO cells is expected to meet the stringent safety and regulatory requirements for prophylactic application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The studies of rare genetic defects, the preliminary results of population-based studies, being validated by the experimental immunocompromised animal models and the current observations accumulated in immunocompromised patients with mycobacterial diseases provide us with insights into the importance of the macrophage activation pathway in controlling human infection with pathogenic and non pathogenic intracellular multiplying mycobacteria. Initial cytokine production by infected macrophages and/or dendritic cells could be crucial in the overall regulation of self cure, acquired protection or immunopathological sequelae expressing the disease. Knowledge of molecular and genetic cross-talks between phagocytic and specialized antigen presenting cells and different mycobacterial products associated with persistence or replication of the intracellular bacteria, could provide further informations on the global immune regulation of the early host responses to infection and the following events. It seems likely that the development of mycobacterial infections in humans will turn out to be as much dependent on the genetic make up of the host as or the virulence of the bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The incidences of schistosomiasis and multiple sclerosis (MS) are mutually exclusive worldwide suggesting that schistosomiasis may offer protection against the induction of the immune-mediated disease, MS. Recent studies using the mouse model of MS, experimental autoimmune encephalomyelitis, support a direct suppression of the onset of MS by chronic Schistosoma mansoni infection. Self-reactive Th1 but not Th2 responses develop in infected mice immunized with myelin oligodendrocyte glycoprotein albeit at reduced levels indicating that the induction of auto-reactive T cells is not abolished nor phenotypically altered. CNS infiltration by inflammatory cells, particularly macrophages, is significantly reduced in S. mansoni-infected, immunized mice compared to uninfected, immunized mice. Because activated macrophages are crucial to the induction of clinical disease, these findings support the hypothesis that differences in macrophage activation may contribute to the reduced incidence and delayed progression of experimental autoimmune encephalomyelitis during schistosomiasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leishmaniasis, an endemic parasitosis that leads to chronic cutaneous, mucocutaneous or visceral lesions, is part of those diseases, which still requires improved control tools. Propolis has shown activities against different bacteria, fungi, and parasites. In this study we investigated the effect of four ethanolic extracts of typified propolis collected in different Brazilian states, on Leishmania amazonensis performing assays with promastigote forms, extracellular amastigotes, and on infected peritoneal macrophages. Ethanolic extracts of all propolis samples (BRG, BRPG, BRP-1, and BRV) were capable to reduce parasite load as monitored by the percentage of infected macrophages and the number of intracellular parasites. BRV sample called red propolis, collected in the state of Alagoas, and containing high concentration of prenylated and benzophenones compounds, was the most active extract against L. amazonensis. The anti-Leishmania effect of BRV sample was increased in a concentration and time dependent manner. BRV treatment proved to be non-toxic to macrophage cultures. Since BRV extract at the concentration of 25 µg/ml reduced the parasite load of macrophages while presented no direct toxic to promastigotes and extracellular amastigotes, it was suggested that constituents of propolis intensify the mechanism of macrophage activation leading to killing of L. amazonensis. Our results demonstrate, for the first time, that ethanolic extracts of Brazilian propolis reduce L. amazonensis infection in macrophages, and encourage further studies of this natural compound in animal models of leishmaniasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In our previous study, we have found that 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]-pyrimidin-4-ylamine (BAY 41-2272), a guanylate cyclase agonist, activates human monocytes and the THP-1 cell line to produce the superoxide anion, increasing in vitro microbicidal activity, suggesting that this drug can be used to modulate immune functioning in primary immunodeficiency patients. In the present work, we investigated the potential of the in vivo administration of BAY 41-2272 for the treatment of Candida albicans and Staphylococcus aureus infections introduced via intraperitoneal and subcutaneous inoculation. We found that intraperitoneal treatment with BAY 41-2272 markedly increased macrophage-dependent cell influx to the peritoneum in addition to macrophage functions, such as spreading, zymosan particle phagocytosis and nitric oxide and phorbol myristate acetate-stimulated hydrogen peroxide production. Treatment with BAY 41-2272 was highly effective in reducing the death rate due to intraperitoneal inoculation of C. albicans, but not S. aureus. However, we found that in vitro stimulation of peritoneal macrophages with BAY 41-2272 markedly increased microbicidal activities against both pathogens. Our results show that the prevention of death by the treatment of C. albicans-infected mice with BAY 41-2272 might occur primarily by the modulation of the host immune response through macrophage activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Suite à une infection avec le protozoaire Leishmania major (L. major), les souris sensibles de souche BALB/c développent des lésions progressives associées à une maturation des cellules CD4+ TH2 sécrétant de l'IL-4. A l'inverse, les souris résistantes de souche C57BL/6 guérissent à terme, sous l'influence de l'expansion des cellules CD4+ TH1 produisant de l'IFNy qui a un effet synergique avec le TNF ("tumor necrosis factor") sur l'activation des macrophages et leur fonction leishmanicide. Lors de notre étude nous avons montré que des souris C57BL/6 doublement déficientes en TNF et FasL ("Fas ligand") infectées par L. major ne guérissaient ni leur lésions ni ne contrôlaient la réplication de parasites malgré une réponse de type TH1. Bien que l'activité de synthétase inductible de l'oxyde nitrique ("iNOs") soit comparable chez les souris doublement ou simplement déficientes, seules celles déficientes en FasL ont démontré une incapacité à contrôler la réplication parasitaire. De surcroît il est apparu que le FasL a un effet synergique avec l'IFNy. L'adjonction de FasL à une culture cellulaire de macrophages stimulés par l'IFNy conduit à une activation de ces cellules. Celle-ci est démontrée par l'augmentation de la production de TNF et de NO par les macrophages ainsi que par l'élimination des parasites intracellulaires par ces mêmes cellules. Alors que le FasL et l'IFNy semblent essentiels au contrôle de la réplication des pathogènes intracellulaires, la contribution de TNF s'oriente davantage vers le contrôle de l'inflammation. L'activation macrophagique via Fas précède la mort cellulaire qui survient quelques jours plus tard. Cette mort cellulaire programmée était indépendante de la cascade enzymatique des caspases, au vu de l'absence d'effet de l'inhibiteur non-spécifique ZVAD-fmk des caspases. Ces résultats suggèrent que l'interaction Fas-FasL agit comme une costimulation nécessaire à une activation efficace des macrophages, la mort cellulaire survenant consécutivement à l'activation des macrophages.¦-¦Upon infection with the protozoan parasite Leishmania major (L. major), susceptible BALB/c mice develop non healing lesions associated with the maturation of CD4+ TH2 cells secreting IL-4. In contrast, resistant C57BL/6 mice are able to heal their lesions, because of CD4+ TH1 cell expansion and production of high levels of IFNy, which synergizes with tumour necrosis factor (TNF) in activating macrophages to their microbicidal state. In our study we showed that C57BL/6 mice lacking both TNF and Fas ligand (FasL) infected with L. major neither resolved their lesions nor controlled L. major replication despite a strong TH1 response. Although comparable inducible nitric oxide synthase (iNOs) was measured in single or double deficient mice, only mice deficient in FasL failed to control the parasite replication. Moreover FasL synergized with IFNy for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Addition of FasL to IFNy stimulated macrophages led to their activation, as reflected by the secretion of tumour necrosis factor and nitrite oxide, as well as the induction of their microbicidal activity, resulting in the killing of intracellular L. major. While FasL along with IFNy and iNOs appeared to be essential for the complete control of intracellular pathogen replication, the contribution of TNF appeared more important in controlling the inflammation on the site of infection. Macrophage activation via Fas pathway preceded cell death, which occurred a few days after Fas mediated activation. This program cell death was independent of caspase enzymatic activities as revealed by the lack of effect of ZVAD-fmk, a pan-caspase inhibitor. These results suggested that the Fas-FasL pathway, as part of the classical activation pathway of the macrophages, is essential in the stimulation of macrophage leading to a microbicidal state and to AICD, and may thus contribute to the pathogenesis of L. major infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinical use of antibiotics is based on their capacity to inhibit bacterial growth via bacteriostatic or bacteriocidal effects. In this article, we show that the aminoglycoside antibiotic neomycin, the cyclic lipopeptide antibiotic polymyxin B, and the cyclic peptide antibiotics gramicidin and tyrothricin can induce IL-1β secretion in bone marrow dendritic cells and macrophages. LPS priming was required to trigger the transcription and translation of pro-IL-1β but was independent of TNFR or IL-1R signaling. All four antibiotics required the NLRP3 inflammasome, the adaptor ASC, and caspase-1 activation to secrete IL-1β, a process that depended on potassium efflux but was independent of P2X7 receptor. All four antibiotics induced neutrophil influx into the peritoneal cavity of mice, which required NLRP3 only in the case of polymyxin B. Together, certain antibiotics have the potential to directly activate innate immunity of the host.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Interleukin-1 is pivotal in the pathogenesis of systemic juvenile idiopathic arthritis (JIA). We assessed the efficacy and safety of canakinumab, a selective, fully human, anti-interleukin-1β monoclonal antibody, in two trials. METHODS: In trial 1, we randomly assigned patients, 2 to 19 years of age, with systemic JIA and active systemic features (fever; ≥2 active joints; C-reactive protein, >30 mg per liter; and glucocorticoid dose, ≤1.0 mg per kilogram of body weight per day), in a double-blind fashion, to a single subcutaneous dose of canakinumab (4 mg per kilogram) or placebo. The primary outcome, termed adapted JIA ACR 30 response, was defined as improvement of 30% or more in at least three of the six core criteria for JIA, worsening of more than 30% in no more than one of the criteria, and resolution of fever. In trial 2, after 32 weeks of open-label treatment with canakinumab, patients who had a response and underwent glucocorticoid tapering were randomly assigned to continued treatment with canakinumab or to placebo. The primary outcome was time to flare of systemic JIA. RESULTS: At day 15 in trial 1, more patients in the canakinumab group had an adapted JIA ACR 30 response (36 of 43 [84%], vs. 4 of 41 [10%] in the placebo group; P<0.001). In trial 2, among the 100 patients (of 177 in the open-label phase) who underwent randomization in the withdrawal phase, the risk of flare was lower among patients who continued to receive canakinumab than among those who were switched to placebo (74% of patients in the canakinumab group had no flare, vs. 25% in the placebo group, according to Kaplan-Meier estimates; hazard ratio, 0.36; P=0.003). The average glucocorticoid dose was reduced from 0.34 to 0.05 mg per kilogram per day, and glucocorticoids were discontinued in 42 of 128 patients (33%). The macrophage activation syndrome occurred in 7 patients; infections were more frequent with canakinumab than with placebo. CONCLUSIONS: These two phase 3 studies show the efficacy of canakinumab in systemic JIA with active systemic features. (Funded by Novartis Pharma; ClinicalTrials.gov numbers, NCT00889863 and NCT00886769.).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Interleukin-1 is pivotal in the pathogenesis of systemic juvenile idiopathic arthritis (JIA). We assessed the efficacy and safety of canakinumab, a selective, fully human, anti-interleukin-1β monoclonal antibody, in two trials. METHODS: In trial 1, we randomly assigned patients, 2 to 19 years of age, with systemic JIA and active systemic features (fever; ≥2 active joints; C-reactive protein, >30 mg per liter; and glucocorticoid dose, ≤1.0 mg per kilogram of body weight per day), in a double-blind fashion, to a single subcutaneous dose of canakinumab (4 mg per kilogram) or placebo. The primary outcome, termed adapted JIA ACR 30 response, was defined as improvement of 30% or more in at least three of the six core criteria for JIA, worsening of more than 30% in no more than one of the criteria, and resolution of fever. In trial 2, after 32 weeks of open-label treatment with canakinumab, patients who had a response and underwent glucocorticoid tapering were randomly assigned to continued treatment with canakinumab or to placebo. The primary outcome was time to flare of systemic JIA. RESULTS: At day 15 in trial 1, more patients in the canakinumab group had an adapted JIA ACR 30 response (36 of 43 [84%], vs. 4 of 41 [10%] in the placebo group; P<0.001). In trial 2, among the 100 patients (of 177 in the open-label phase) who underwent randomization in the withdrawal phase, the risk of flare was lower among patients who continued to receive canakinumab than among those who were switched to placebo (74% of patients in the canakinumab group had no flare, vs. 25% in the placebo group, according to Kaplan-Meier estimates; hazard ratio, 0.36; P=0.003). The average glucocorticoid dose was reduced from 0.34 to 0.05 mg per kilogram per day, and glucocorticoids were discontinued in 42 of 128 patients (33%). The macrophage activation syndrome occurred in 7 patients; infections were more frequent with canakinumab than with placebo. CONCLUSIONS: These two phase 3 studies show the efficacy of canakinumab in systemic JIA with active systemic features. (Funded by Novartis Pharma; ClinicalTrials.gov numbers, NCT00889863 and NCT00886769.).