896 resultados para localizzazione, location-aware, posizionamento indoor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Questa tesi ha come scopo principale l'analisi delle diverse tecnologie di localizzazione in ambito indoor, analizzando in particolare l'utilizzo del Wifi RSS Fingerprinting. La tecnica del Wifi RSS Fingerprinting è una tecnica per la localizzazione all'interno di ambienti chiusi, che consiste nella definizione di un 'impronta'(fingerprint) in un punto preciso dell'ambiente(definito reference point), andando a inserire in un database i valori di potenza del segnale ricevuto(RSS) da ogni access point rilevato all'interno di quel determinato reference point. Per l'implementazione di questa tecnica è stato sviluppato un applicativo con un architettura client-server. Il client è stato sviluppato in ambiente Android, realizzando una applicazione per la gestione della fase di salvataggio di nuovi fingerprint e per la fase di localizzazione della posizione corrente, tramite l'utilizzo dei vari fingerprint precedentemente inseriti all'interno del DB. Il server, sviluppato in Node.js(framework Javascript), gestirà le diverse richieste ricevute dal client tramite delle chiamate AJAX, prelevando le informazioni richieste direttamente dal database. All'interno delle applicativo sono stati implementati diversi algoritmi per la localizzazione indoor, in modo da poter verificare l'applicabilità di questo sistema in un ambito reale. Questi algoritmi sono stati in seguito testati per valutare l'accuratezza e la precisione di ciascuno, andando ad individuare gli algoritmi migliori da utilizzare in base a scenari diversi.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Uno dei temi più recenti nel campo delle telecomunicazioni è l'IoT. Tale termine viene utilizzato per rappresentare uno scenario nel quale non solo le persone, con i propri dispositivi personali, ma anche gli oggetti che le circondano saranno connessi alla rete con lo scopo di scambiarsi informazioni di diversa natura. Il numero sempre più crescente di dispositivi connessi in rete, porterà ad una richiesta maggiore in termini di capacità di canale e velocità di trasmissione. La risposta tecnologica a tali esigenze sarà data dall’avvento del 5G, le cui tecnologie chiave saranno: massive MIMO, small cells e l'utilizzo di onde millimetriche. Nel corso del tempo la crescita delle vendite di smartphone e di dispositivi mobili in grado di sfruttare la localizzazione per ottenere servizi, ha fatto sì che la ricerca in questo campo aumentasse esponenzialmente. L'informazione sulla posizione viene utilizzata infatti in differenti ambiti, si passa dalla tradizionale navigazione verso la meta desiderata al geomarketing, dai servizi legati alle chiamate di emergenza a quelli di logistica indoor per industrie. Data quindi l'importanza del processo di positioning, l'obiettivo di questa tesi è quello di ottenere la stima sulla posizione e sulla traiettoria percorsa da un utente che si muove in un ambiente indoor, sfruttando l'infrastruttura dedicata alla comunicazione che verrà a crearsi con l'avvento del 5G, permettendo quindi un abbattimento dei costi. Per fare ciò è stato implementato un algoritmo basato sui filtri EKF, nel quale il sistema analizzato presenta in ricezione un array di antenne, mentre in trasmissione è stato effettuato un confronto tra due casi: singola antenna ed array. Lo studio di entrambe le situazioni permette di evidenziare, quindi, i vantaggi ottenuti dall’utilizzo di sistemi multi antenna. Inoltre sono stati analizzati altri elementi chiave che determinano la precisione, quali geometria del sistema, posizionamento del ricevitore e frequenza operativa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Questo elaborato studia e analizza il comportamento di tre algoritmi di base per quanto riguarda la localizzazione indoor e in particolare la tecnica del fingerprint. L'elaborato include l'analisi di come l'eterogeneita dei dispositivi possa influenzare gli algoritmi e la loro accuratezza nel produrre il risultato. Si include inoltre l'analisi dello stato dell'arte la progettazione e lo sviluppo di un'applicazione Android e di un web service. L'illustrazione dei test effettuati e le considerazioni finali concludono la tesi.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Location information is commonly used in context-aware applications and pervasive systems. These applications and systems may require knowledge, of the location of users, devices and services. This paper presents a location management system able to gather, process and manage location information from a variety of physical and virtual location sensors. The system scales to the complexity of context-aware applications, to a variety of types and large number of location sensors and clients, and to geographical size of the system. The proposed location management system provides conflict resolution of location information and mechanisms to ensure privacy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Questo elaborato di tesi ha lo scopo di illustrare un'applicazione realizzata per dispositivi Android in grado di localizzare l'utente all'interno di un ambiente indoor sfruttando l'utilizzo dei Beacon e dare una valutazione dei risultati ottenuti. L'utente potrà registrare i dispositivi Beacon in suo possesso all'interno dell'applicazione, caricare la planimetria di un ambiente e configurarlo indicando esattamente quale Beacon si trova in una determinata posizione. Infine potrà scegliere quale tra i tre algoritmi implementati (Prossimità, Triangolazione e Fingerprinting) utilizzare per visualizzare la propria posizione sulla mappa. I tre algoritmi sono stati sottoposti a vari test che hanno permesso di analizzare le differenze tra di essi in termini di accuratezza e le performance generali dell'applicativo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il processo di localizzazione risponde all'esigenza dell'uomo di avere una percezione sempre più dettagliata e precisa del contesto in cui si trova, con l'intento di migliorare e semplificare l'interazione con oggetti e cose ivi presenti. L'idea attuale è quella di progettare sistemi di posizionamento con particolare riguardo agli ambienti indoor, caratterizzati da proprietà e densità di elementi che limitano fortemente le prestazioni dei consolidati sistemi di tracking, particolarmente efficienti in spazi aperti. Consapevole di questa necessità, il seguente elaborato analizza le prestazioni di un sistema di localizzazione sviluppato dall'Università di Bologna funzionante in tecnologia Ultra-Wide Bandwidth (UWB) e installato nei laboratori DEI dell'Alma Mater Studiorum con sede a Cesena. L'obiettivo è quello di caratterizzare l'accuratezza di localizzazione del sistema, suggerendo nuovi approcci operativi e de�finendo il ruolo dei principali parametri che giocano nel meccanismo di stima della posizione, sia in riferimento a scenari marcatamente statici sia in contesti in cui si ha una interazione dinamica degli oggetti con lo spazio circostante. Una caratteristica della tecnologia UWB è, infatti, quella di limitare l'errore di posizionamento nel caso di localizzazione indoor, grazie alle caratteristiche fisiche ed elettriche dei segnali, aprendo nuovi scenari applicativi favorevoli in termini economici, energetici e di minore complessità dei dispositivi impiegati.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The indoor air quality (IAQ) in buildings is currently assessed by measurement of pollutants during building operation for comparison with air quality standards. Current practice at the design stage tries to minimise potential indoor air quality impacts of new building materials and contents by selecting low-emission materials. However low-emission materials are not always available, and even when used the aggregated pollutant concentrations from such materials are generally overlooked. This paper presents an innovative tool for estimating indoor air pollutant concentrations at the design stage, based on emissions over time from large area building materials, furniture and office equipment. The estimator considers volatile organic compounds, formaldehyde and airborne particles from indoor materials and office equipment and the contribution of outdoor urban air pollutants affected by urban location and ventilation system filtration. The estimated pollutants are for a single, fully mixed and ventilated zone in an office building with acceptable levels derived from Australian and international health-based standards. The model acquires its dimensional data for the indoor spaces from a 3D CAD model via IFC files and the emission data from a building products/contents emissions database. This paper describes the underlying approach to estimating indoor air quality and discusses the benefits of such an approach for designers and the occupants of buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses and summarises a recent systematic study on the implication of global warming on air conditioned office buildings in Australia. Four areas are covered, including analysis of historical weather data, generation of future weather data for the impact study of global warming, projection of building performance under various global warming scenarios, and evaluation of various adaptation strategies under 2070 high global warming conditions. Overall, it is found that depending on the assumed future climate scenarios and the location considered, the increase of total building energy use for the sample Australian office building may range from 0.4 to 15.1%. When the increase of annual average outdoor temperature exceeds 2 °C, the risk of overheating will increase significantly. However, the potential overheating problem could be completely eliminated if internal load density is significantly reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motor vehicle emissions have been identified as one of the major contributors of fine and ultrafine particles (UFP) in urban areas. Schools located near major roads could potentially be exposed to high levels of UPFs and school classroom is an important microenvironment where significant exposure to UFPs is likely to occur. Most of the research conducted to date has investigated the relationship between indoor and outdoor particle number concentration (PNC) in schools based on one outdoor location, which may introduce a level of error when calculating the variation of total UPFs, and can result in the underestimation or overestimation of indoor to outdoor (I/O) ratio values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 µm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6 to 3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building’s HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge for robot localization and mapping systems is maintaining reliable operation in a changing environment. Vision-based systems in particular are susceptible to changes in illumination and weather, and the same location at another time of day may appear radically different to a system using a feature-based visual localization system. One approach for mapping changing environments is to create and maintain maps that contain multiple representations of each physical location in a topological framework or manifold. However, this requires the system to be able to correctly link two or more appearance representations to the same spatial location, even though the representations may appear quite dissimilar. This paper proposes a method of linking visual representations from the same location without requiring a visual match, thereby allowing vision-based localization systems to create multiple appearance representations of physical locations. The most likely position on the robot path is determined using particle filter methods based on dead reckoning data and recent visual loop closures. In order to avoid erroneous loop closures, the odometry-based inferences are only accepted when the inferred path's end point is confirmed as correct by the visual matching system. Algorithm performance is demonstrated using an indoor robot dataset and a large outdoor camera dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major effect genes are often used for germplasm identification, for diversity analyses and as selection targets in breeding. To date, only a few morphological characters have been mapped as major effect genes across a range of genetic linkage maps based on different types of molecular markers in sorghum (Sorghum bicolor (L.) Moench). This study aims to integrate all available previously mapped major effect genes onto a complete genome map, linked to the whole genome sequence, allowing sorghum breeders and researchers to link this information to QTL studies and to be aware of the consequences of selection for major genes. This provides new opportunities for breeders to take advantage of readily scorable morphological traits and to develop more effective breeding strategies. We also provide examples of the impact of selection for major effect genes on quantitative traits in sorghum. The concepts described in this paper have particular application to breeding programmes in developing countries where molecular markers are expensive or impossible to access.