949 resultados para linear quadratic Gaussian (LQG)
Resumo:
In this paper, the free vibration of a non-uniform free-free Euler-Bernoulli beam is studied using an inverse problem approach. It is found that the fourth-order governing differential equation for such beams possess a fundamental closed-form solution for certain polynomial variations of the mass and stiffness. An infinite number of non-uniform free-free beams exist, with different mass and stiffness variations, but sharing the same fundamental frequency. A detailed study is conducted for linear, quadratic and cubic variations of mass, and on how to pre-select the internal nodes such that the closed-form solutions exist for the three cases. A special case is also considered where, at the internal nodes, external elastic constraints are present. The derived results are provided as benchmark solutions for the validation of non-uniform free-free beam numerical codes. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Using the recently developed model predictive static programming (MPSP), a suboptimal guidance logic is presented in this paper for formation flying of small satellites. Due to the inherent nature of the problem formulation, MPSP does not require the system dynamics to be linearized. The proposed guidance scheme is valid both for high eccentricity chief satellite orbits as well as large separation distance between chief and deputy satellites. Moreover, since MPSP poses the desired conditions as a set of `hard constraints', the final accuracy level achieved is very high. The proposed guidance scheme has been tested successfully for a variety of initial conditions and for a variety of formation commands as well. Comparison with standard Linear Quadratic Regulator (LQR) solution (which serves as a guess solution for MPSP) and another nonlinear controller, State Dependent Riccati Equation (SDRE) reveals that MPSP guidance achieves the objective with higher accuracy and with lesser amount of control usage as well.
Resumo:
We present methods for fixed-lag smoothing using Sequential Importance sampling (SIS) on a discrete non-linear, non-Gaussian state space system with unknown parameters. Our particular application is in the field of digital communication systems. Each input data point is taken from a finite set of symbols. We represent transmission media as a fixed filter with a finite impulse response (FIR), hence a discrete state-space system is formed. Conventional Markov chain Monte Carlo (MCMC) techniques such as the Gibbs sampler are unsuitable for this task because they can only perform processing on a batch of data. Data arrives sequentially, so it would seem sensible to process it in this way. In addition, many communication systems are interactive, so there is a maximum level of latency that can be tolerated before a symbol is decoded. We will demonstrate this method by simulation and compare its performance to existing techniques.
Resumo:
We develop methods for performing filtering and smoothing in non-linear non-Gaussian dynamical models. The methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. In particular, novel techniques are presented for generation of random realisations from the joint smoothing distribution and for MAP estimation of the state sequence. Realisations of the smoothing distribution are generated in a forward-backward procedure, while the MAP estimation procedure can be performed in a single forward pass of the Viterbi algorithm applied to a discretised version of the state space. An application to spectral estimation for time-varying autoregressions is described.
Resumo:
Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.
Resumo:
Sequential Monte Carlo (SMC) methods are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. We propose a new SMC algorithm to compute the expectation of additive functionals recursively. Essentially, it is an on-line or "forward only" implementation of a forward filtering backward smoothing SMC algorithm proposed by Doucet, Godsill and Andrieu (2000). Compared to the standard \emph{path space} SMC estimator whose asymptotic variance increases quadratically with time even under favorable mixing assumptions, the non asymptotic variance of the proposed SMC estimator only increases linearly with time. We show how this allows us to perform recursive parameter estimation using an SMC implementation of an on-line version of the Expectation-Maximization algorithm which does not suffer from the particle path degeneracy problem.
Resumo:
We design a particle interpretation of Feynman-Kac measures on path spaces based on a backward Markovian representation combined with a traditional mean field particle interpretation of the flow of their final time marginals. In contrast to traditional genealogical tree based models, these new particle algorithms can be used to compute normalized additive functionals "on-the-fly" as well as their limiting occupation measures with a given precision degree that does not depend on the final time horizon. We provide uniform convergence results with respect to the time horizon parameter as well as functional central limit theorems and exponential concentration estimates. Our results have important consequences for online parameter estimation for non-linear non-Gaussian state-space models. We show how the forward filtering backward smoothing estimates of additive functionals can be computed using a forward only recursion.
Resumo:
Sequential Monte Carlo (SMC) methods are popular computational tools for Bayesian inference in non-linear non-Gaussian state-space models. For this class of models, we propose SMC algorithms to compute the score vector and observed information matrix recursively in time. We propose two different SMC implementations, one with computational complexity $\mathcal{O}(N)$ and the other with complexity $\mathcal{O}(N^{2})$ where $N$ is the number of importance sampling draws. Although cheaper, the performance of the $\mathcal{O}(N)$ method degrades quickly in time as it inherently relies on the SMC approximation of a sequence of probability distributions whose dimension is increasing linearly with time. In particular, even under strong \textit{mixing} assumptions, the variance of the estimates computed with the $\mathcal{O}(N)$ method increases at least quadratically in time. The $\mathcal{O}(N^{2})$ is a non-standard SMC implementation that does not suffer from this rapid degrade. We then show how both methods can be used to perform batch and recursive parameter estimation.
Resumo:
This paper explores the use of Monte Carlo techniques in deterministic nonlinear optimal control. Inter-dimensional population Markov Chain Monte Carlo (MCMC) techniques are proposed to solve the nonlinear optimal control problem. The linear quadratic and Acrobot problems are studied to demonstrate the successful application of the relevant techniques.
Resumo:
This thesis is mainly concerned with the application of groups of transformations to differential equations and in particular with the connection between the group structure of a given equation and the existence of exact solutions and conservation laws. In this respect the Lie-Bäcklund groups of tangent transformations, particular cases of which are the Lie tangent and the Lie point groups, are extensively used.
In Chapter I we first review the classical results of Lie, Bäcklund and Bianchi as well as the more recent ones due mainly to Ovsjannikov. We then concentrate on the Lie-Bäcklund groups (or more precisely on the corresponding Lie-Bäcklund operators), as introduced by Ibragimov and Anderson, and prove some lemmas about them which are useful for the following chapters. Finally we introduce the concept of a conditionally admissible operator (as opposed to an admissible one) and show how this can be used to generate exact solutions.
In Chapter II we establish the group nature of all separable solutions and conserved quantities in classical mechanics by analyzing the group structure of the Hamilton-Jacobi equation. It is shown that consideration of only Lie point groups is insufficient. For this purpose a special type of Lie-Bäcklund groups, those equivalent to Lie tangent groups, is used. It is also shown how these generalized groups induce Lie point groups on Hamilton's equations. The generalization of the above results to any first order equation, where the dependent variable does not appear explicitly, is obvious. In the second part of this chapter we investigate admissible operators (or equivalently constants of motion) of the Hamilton-Jacobi equation with polynornial dependence on the momenta. The form of the most general constant of motion linear, quadratic and cubic in the momenta is explicitly found. Emphasis is given to the quadratic case, where the particular case of a fixed (say zero) energy state is also considered; it is shown that in the latter case additional symmetries may appear. Finally, some potentials of physical interest admitting higher symmetries are considered. These include potentials due to two centers and limiting cases thereof. The most general two-center potential admitting a quadratic constant of motion is obtained, as well as the corresponding invariant. Also some new cubic invariants are found.
In Chapter III we first establish the group nature of all separable solutions of any linear, homogeneous equation. We then concentrate on the Schrodinger equation and look for an algorithm which generates a quantum invariant from a classical one. The problem of an isomorphism between functions in classical observables and quantum observables is studied concretely and constructively. For functions at most quadratic in the momenta an isomorphism is possible which agrees with Weyl' s transform and which takes invariants into invariants. It is not possible to extend the isomorphism indefinitely. The requirement that an invariant goes into an invariant may necessitate variants of Weyl' s transform. This is illustrated for the case of cubic invariants. Finally, the case of a specific value of energy is considered; in this case Weyl's transform does not yield an isomorphism even for the quadratic case. However, for this case a correspondence mapping a classical invariant to a quantum orie is explicitly found.
Chapters IV and V are concerned with the general group structure of evolution equations. In Chapter IV we establish a one to one correspondence between admissible Lie-Bäcklund operators of evolution equations (derivable from a variational principle) and conservation laws of these equations. This correspondence takes the form of a simple algorithm.
In Chapter V we first establish the group nature of all Bäcklund transformations (BT) by proving that any solution generated by a BT is invariant under the action of some conditionally admissible operator. We then use an algorithm based on invariance criteria to rederive many known BT and to derive some new ones. Finally, we propose a generalization of BT which, among other advantages, clarifies the connection between the wave-train solution and a BT in the sense that, a BT may be thought of as a variation of parameters of some. special case of the wave-train solution (usually the solitary wave one). Some open problems are indicated.
Most of the material of Chapters II and III is contained in [I], [II], [III] and [IV] and the first part of Chapter V in [V].
Resumo:
The contribution described in this paper is an algorithm for learning nonlinear, reference tracking, control policies given no prior knowledge of the dynamical system and limited interaction with the system through the learning process. Concepts from the field of reinforcement learning, Bayesian statistics and classical control have been brought together in the formulation of this algorithm which can be viewed as a form of indirect self tuning regulator. On the task of reference tracking using a simulated inverted pendulum it was shown to yield generally improved performance on the best controller derived from the standard linear quadratic method using only 30 s of total interaction with the system. Finally, the algorithm was shown to work on the simulated double pendulum proving its ability to solve nontrivial control tasks. © 2011 IEEE.
Resumo:
The solution time of the online optimization problems inherent to Model Predictive Control (MPC) can become a critical limitation when working in embedded systems. One proposed approach to reduce the solution time is to split the optimization problem into a number of reduced order problems, solve such reduced order problems in parallel and selecting the solution which minimises a global cost function. This approach is known as Parallel MPC. The potential capabilities of disturbance rejection are introduced using a simulation example. The algorithm is implemented in a linearised model of a Boeing 747-200 under nominal flight conditions and with an induced wind disturbance. Under significant output disturbances Parallel MPC provides a significant improvement in performance when compared to Multiplexed MPC (MMPC) and Linear Quadratic Synchronous MPC (SMPC). © 2013 IEEE.
Resumo:
The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion or Co-60 gamma-ray. Chromosomal aberrations were analyzed in metaphase II oocytes at 7 weeks after irradiation. The relative biological effectiveness (RBE) of C C-12(6+) ion was calculated with respect to Co-60 gamma-ray for the induction of chromosornal aberrations. The C-12(6+) ion and Co-60 gamma-ray dose-response relationships for chromosomal aberrations were plotted by linear quadratic models. The data showed that there was a dose-related increase in frequency of chromosomal aberrations in all the treated groups compared to controls. The RBE values for C-12(6+) ions relative to (CO)-C-60 gamma-rays were 2.49, 2.29, 1.57, 1.42 or 1.32 for the doses of 0.5, 1.0, 2.07 4.0 or 6.0 Gy, respectively. Moreover, a different distribution of the various types of aberrations has been found for C-12(6+) ion and Co-60 gamma-ray irradiations. The dose-response relationships for C-12(6+) ion and (CO)-C-60 gamma-ray exhibited positive correlations. The results from the present study may be helpful for assessing genetic damage following exposure of immature oocytes to ionizing radiation.
Resumo:
The purpose of this paper is to prepare for an easy and reliable biodosimeter protocol for radiation accidents involving high-linear energy transfer (LET) exposure. Human peripheral blood lymphocytes were irradiated using carbon ions (LET: 34.6 keV mu m(-1)), and the chromosome aberrations induced were analyzed using both a conventional colcemid block method and a calyculin A induced premature chromosome condensation (PCC) method. At a lower dose range (0-4 Gy), the measured dicentric (dics) and centric ring chromosomes (cRings) provided reasonable dose information. At higher doses (8 Gy), however, the frequency of dics and cRings was not suitable for dose estimation. Instead, we found that the number of Giemsa-stained drug-induced G2 prematurely condensed chromosomes (G2-PCC) can be used for dose estimation, since the total chromosome number (including fragments) was linearly correlated with radiation dose (r = 0.99). The ratio of the longest and the shortest chromosome length of the drug-induced G2-PCCs increased with radiation dose in a linear-quadratic manner (r = 0.96), which indicates that this ratio can also be used to estimate radiation doses. Obviously, it is easier to establish the dose response curve using the PCC technique than using the conventional metaphase chromosome method. It is assumed that combining the ratio of the longest and the shortest chromosome length with analysis of the total chromosome number might be a valuable tool for rapid and precise dose estimation for victims of radiation accidents.
Resumo:
Three human malignancy cell lines were irradiated with Co-60 gamma-rays. Initial chromatid breaks were measured by using the chemically induced premature chromosome condensation technique. Survival curves of cells exposed to gamma rays was linear-quadratic while the efficiency of Calyculin A in inducing PCC of G(2) PCC was about five times more than G(1) PCC. A dose-dependent increase in radiation-induced chromatid/isochromatid breaks was observed in G(1) and G(2) phase PCC and a nearly positive linear correlation was found between cell survival and chromatin breaks. This study implies that low LET radiation-induced chromatid/isochromatid breaks can potentially be used to predict the radiosensitivity of tumor cells either in in vitro experimentation or in in vivo clinical radiotherapy.