905 resultados para lignocellulose hydrolysis
Resumo:
Agronomic biomass yields of forage sorghum BRS 655 presented similar results to other energy crops, producing 9 to 12.6 tons/ha (dry mass) of sorghum straw. The objective of this study was to evaluate the lignocellulosic part of this cultivar in terms of its potential in the different unit processes in the production of cellulosic ethanol, measuring the effects of pretreatment and enzymatic hydrolysis. Three types of pre-treatments for two reaction times were conducted to evaluate the characteristics of the pulp for subsequent saccharification. The pulp pretreated by alkali, and by acid followed by delignification, attained hydrolysis rates of over 90%.
Resumo:
An investigation was conducted into the production of xylose by acid hydrolysis of rice husks and its subsequent bioconversion to xylitol. The parameters were optimised using the response surface methodology. The fermentation stage took place with the aid of the yeast species Candida guilliermondii and Candida tropicalis. An evaluation of the influence of several biomass pre-treatments was also performed. The effects of the acid concentration and hydrolysate pH on xylitol global yield were also assessed, and the highest yield of xylitol was 64.0% (w/w). The main products, xylose and xylitol, were identified and quantified by means of liquid chromatography.
Resumo:
Lignocellulosic biomasses (e.g., wood and straws) are a potential renewable source for the production of a wide variety of chemicals that could be used to replace those currently produced by petrochemical industry. This would lead to lower greenhouse gas emissions and waste amounts, and to economical savings. There are many possible pathways available for the manufacturing of chemicals from lignocellulosic biomasses. One option is to hydrolyze the cellulose and hemicelluloses of these biomasses into monosaccharides using concentrated sulfuric acid as catalyst. This process is an efficient method for producing monosaccharides which are valuable platforn chemicals. Also other valuable products are formed in the hydrolysis. Unfortunately, the concentrated acid hydrolysis has been deemed unfeasible mainly due to high chemical consumption resulting from the need to remove sulfuric acid from the obtained hydrolysates prior to the downstream processing of the monosaccharides. Traditionally, this has been done by neutralization with lime. This, however, results in high chemical consumption. In addition, the by-products formed in the hydrolysis are not removed and may, thus, hinder the monosaccharide processing. In order to improve the feasibility of the concentrated acid hydrolysis, the chemical consumption should be decreased by recycling of sulfuric acid without neutralization. Furthermore, the monosaccharides and the other products formed in the hydrolysis should be recovered selectively for efficient downstream processing. The selective recovery of the hydrolysis by-products would have additional economical benefits on the process due to their high value. In this work, the use of chromatographic fractionation for the recycling of sulfuric acid and the selective recovery of the main components from the hydrolysates formed in the concentrated acid hydrolysis was investigated. Chromatographic fractionation based on the electrolyte exclusion with gel type strong acid cation exchange resins in acid (H+) form as a stationary phase was studied. A systematic experimental and model-based study regarding the separation task at hand was conducted. The phenomena affecting the separation were determined and their effects elucidated. Mathematical models that take accurately into account these phenomena were derived and used in the simulation of the fractionation process. The main components of the concentrated acid hydrolysates (sulfuric acid, monosaccharides, and acetic acid) were included into this model. Performance of the fractionation process was investigated experimentally and by simulations. Use of different process options was also studied. Sulfuric acid was found to have a significant co-operative effect on the sorption of the other components. This brings about interesting and beneficial effects in the column operations. It is especially beneficial for the separation of sulfuric acid and the monosaccharides. Two different approaches for the modelling of the sorption equilibria were investigated in this work: a simple empirical approach and a thermodynamically consistent approach (the Adsorbed Solution theory). Accurate modelling of the phenomena observed in this work was found to be possible using the simple empirical models. The use of the Adsorbed Solution theory is complicated by the nature of the theory and the complexity of the studied system. In addition to the sorption models, a dynamic column model that takes into account the volume changes of the gel type resins as changing resin bed porosity was also derived. Using the chromatography, all the main components of the hydrolysates can be recovered selectively, and the sulfuric acid consumption of the hydrolysis process can be lowered considerably. Investigation of the performance of the chromatographic fractionation showed that the highest separation efficiency in this separation task is obtained with a gel type resin with a high crosslinking degree (8 wt. %); especially when the hydrolysates contain high amounts of acetic acid. In addition, the concentrated acid hydrolysis should be done with as low sulfuric acid concentration as possible to obtain good separation performance. The column loading and flow rate also have large effects on the performance. In this work, it was demonstrated that when recycling of the fractions obtained in the chromatographic fractionation are recycled to preceding unit operations these unit operations should included in the performance evaluation of the fractionation. When this was done, the separation performance and the feasibility of the concentrated acid hydrolysis process were found to improve considerably. Use of multi-column chromatographic fractionation processes, the Japan Organo process and the Multi-Column Recycling Chromatography process, was also investigated. In the studied case, neither of these processes could compete with the single-column batch process in the productivity. However, due to internal recycling steps, the Multi-Column Recycling Chromatography was found to be superior to the batch process when the product yield and the eluent consumption were taken into account.
Resumo:
Xylanase activity was isolated from crude extracts of Trichoderma harzianum strains C and 4 grown at 28oC in a solid medium containing wheat bran as the carbon source. Enzyme activity was demonstrable in the permeate after ultrafiltration of the crude extracts using an Amicon system. The hydrolysis patterns of different xylans and paper pulps by xylanase activity ranged from xylose, xylobiose and xylotriose to higher xylooligosaccharides. A purified ß-xylosidase from the Trichoderma harzianum strain released xylose, xylobiose and xylotriose from seaweed, deacetylated, oat spelt and birchwood xylans. The purified enzyme was not active against acetylated xylan and catalyzed the hydrolysis of xylooligosaccharides, including xylotriose, xylotetraose and xylopentaose. However, the enzyme was not able to degrade xylohexaose. Xylanase pretreatment was effective for hardwood kraft pulp bleaching. Hardwood kraft pulp bleached in the XEOP sequence had its kappa number reduced from 13.2 to 8.9 and a viscosity of 20.45 cp. The efficiency of delignification was 33%.
Resumo:
Protein fractions were isolated from lentil cotyledons and tannins were isolated and purified from lentil seed coats. The globulin fraction corresponded to 42.7% of the total lentil flour nitrogen, representing the major protein fraction. Acetone:water (7:3) was the best extractant for seed coat tannins compared to methanol or methanol-HCl 1%. Native and heated (99oC/15 min.) isolated lentil globulin and casein were hydrolyzed with trypsin and pepsin in the absence of tannins and at 1:40, 1:20, 1:10, 1:5 and 1:2.5 tannin-to-protein ratios. The tryptic and peptic hydrolysis of the unheated proteins were reduced with increasing tannin-to-protein ratios. Unheated casein showed to be more susceptible to trypsin than globulin and the opposite effect was observed with pepsin. Heating followed by tannin interaction and hydrolysis had a more pronounced effect on tryptic than peptic digestion for both proteins.
Resumo:
Enzymatic hydrolysis of granular starch is an important tool to provide information about granule structure. Cassava, sweet potato, Peruvian carrot, and potato starches were hydrolyzed by bacterial α-amylase at 37 °C for 48 hours, and the physicochemical properties of the residues from hydrolysis were determined. Cassava starch was the most susceptible to enzyme displaying 20.9% of hydrolysis, whereas potato starch was the most resistant with 5.9%. The granule average size varied from 10.8 to 23.4 μm for Peruvian carrot and potato starches, respectively. With the use of SEM, a smooth granule surface was observed for all native starches. Cassava and sweet potato starches displayed an A-type X-ray diffraction pattern, while Peruvian carrot and potato starches showed a B-type pattern. After hydrolysis, cassava, sweet potato, and Peruvian carrot starches showed some well degraded granules, whereas potato starch presented a slight sign of degradation. The amylose content of the starches decreased with hydrolysis for cassava, sweet potato, and Peruvian carrot starches and was kept unchanged for the potato starch. As expected, intrinsic viscosity and pasting properties decreased for all hydrolyzed starches. There is no difference between thermal properties of native and hydrolyzed starches. These results suggested that hydrolysis occurred in amorphous and crystalline areas of the granules. The B type diffraction pattern in conjunction with the big granule size of the potato starch may have contributed to the greatest resistance of this starch to hydrolysis.
Resumo:
Technological functional properties of native and acid-thinned pinhão (seeds of Araucária angustifolia, Brazilian pine) starches were evaluated and compared to those of native and acid-thinned corn starches. The starches were hydrolyzed (3.2 mol.L-1 HCl, 44 ºC, 6 hours) and evaluated before and after the hydrolysis reaction in terms of formation, melting point and thermo-reversibility of gel starches, retrogradation (in a 30-day period and measurements every three days), paste freezing and thawing stability (after six freezing and thawing cycles), swelling power, and solubility. The results of light transmittance (%) of pastes of native and acid-thinned pinhão starches was higher (lower tendency to retrogradation) than that obtained for corn starches after similar storage period. Native pinhão starch (NPS) presented lower syneresis than native corn starch (NCS) when submitted to freeze-thaw cycles. The acid hydrolysis increased the syneresis of the two native varieties under storage at 5 ºC and after freezing and thawing cycles. The solubility of NPS was lower than that of native corn starch at 25, 50, and 70 ºC. However, for the acid-thinned pinhão starch (APS), this property was significantly higher (p < 0.05) when compared to that of acid-thinned corn starch (ACS). From the results obtained, it can be said that the acid treatment was efficient in producing a potential fat substitute from pinhão starch variety, but this ability must be further investigated.
Resumo:
Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties.
Resumo:
The marine bioprocessing industry offers great potential to utilize byproducts for fish meal replacement in aquafeeds. Jumbo squid is an important fishery commodity in Mexico, but only the mantle is marketed. Head, fins, guts and tentacles are discarded in spite of being protein-rich byproducts. This study evaluated the use of two jumbo squid byproduct hydrolysates obtained by acid-enzymatic hydrolysis (AEH) and by autohydrolysis (AH) as ingredients in practical diets for shrimp. The hydrolysates were included at levels of 2.5 and 5.0% of the diet dry weight in four practical diets, including a control diet without hydrolysate. Shrimp growth and survival were not significantly affected by the dietary treatments. Postharvest quality of abdominal muscle was evaluated in terms of proximate composition and sensory evaluation. Significantly higher crude protein was observed in the muscle of shrimp fed the highest hydrolysate levels, AH 5% (204.8 g kg- 1) or AEH 5% (201.3 g kg- 1). Sensory analysis of cooked muscle showed significant differences for all variables evaluated: color, odor, flavor, and firmness. It was concluded that Jumbo squid byproducts can be successfully processed by autohydrolysis or acid-enzymatic hydrolysis, and that up to 5.0% of the hydrolysates can be incorporated into shrimp diets without affecting growth or survival.
Resumo:
Abstract The commercial enzyme (E.C. = 3.2.1.23) from Kluyveromyces lactis (liquid) and Aspergillus oryzae(lyophilized) was investigated for its hydrolysis potential in lactose substrate, UHT milk, and skimmed milk at different concentrations (0.7; 1.0 and 1.5%), pH values (5.0; 6.0; 6.5 and 7.0), and temperature (30; 35; 40 and 55 ºC). High hydrolysis rates were observed for the enzyme from K. lactis at pH 7.0 and 40 ºC, and from A. oryzae at pH 5.0 and 55 ºC. The enzyme from K. lactis showed significantly higher hydrolysis rates when compared to A. oryzae. The effect of temperature and β-galactosidase concentration on the lactose hydrolysis in UHT milk was higher than in skimmed milk, for all temperatures tested. With respect to the thermal stability, a decrease in hydrolysis rate was observed at pH 6.0 at 35 ºC for K. lactisenzyme, and at pH 6.0 at 55 ºC for the enzyme from A. oryzae. This study investigate the hydrolysis of β-galactosidase in UHT and skimmed milk. The knowledge about the characteristics of the β-galactosidase fromK. lactis and A. oryzae enables to use it most efficiently to control the enzyme concentration, temperature, and pH in many industrial processes and product formulations.
Resumo:
Abstract The objective of this work was to evaluate the antioxidant activity of protein hydrolysates obtained by the enzymatic hydrolysis of okara using an endopeptidase (Alcalase) and exopeptidase (Flavourzyme). The reaction was monitored by the pH-stat procedure in which five aliquots were collected during the hydrolysis by each enzyme, corresponding to different degrees of hydrolysis (DH). The antioxidant activities of the aliquots were evaluated by the ABTS, DPPH and FRAP methods. For the hydrolysates obtained using Alcalase, the antioxidant activities increased from: 68.6 to 99.5% (ABTS), 14.5 to 17.7% (DPPH) and 222.6 to 684.9 µM Trolox (FRAP), when the DH varied from 0 to 33.6%. With respect to Flavourzyme, the results were: 67.2 to 88.2% (ABTS), 9.5 to 18.5% (DPPH) and 168.0 to 360.3 µM Trolox (FRAP), when the DH increased up to 5.8%. The results showed that the protein hydrolysates had antioxidant capacities, which were influenced by the degree of hydrolysis and the type of enzyme.
Resumo:
Väkevän hapon katalysoiman hydrolyysin avulla lignoselluloosasta on mahdollista valmistaa arvokkaita sokereita. Katalyyttinä toimiva happo voidaan käyttää uudelleen hydrolyysissä, jos se saadaan erotettua sokereista ilman neutralointia. Tämän kandidaatintyön tavoitteena oli selvittää, soveltuuko happoretardaatiotekniikka väkevähappohydrolysaatin fraktiointiin. Työssä verrattiin happoretardaatiotekniikkaa elektrolyyttiekskluusiotekniikkaan. Työn kirjallisuusosassa käsiteltiin happoretardaation ja elektrolyyttiekskluusion teoriaa. Lisäksi esiteltiin elektrolyyttiekskluusioon ja happoretardaatioon liittyviä tutkimuksia. Työn kokeellisessa osassa suoritettiin panoskromatografiakokeita käyttäen syöttöliuoksena rikkihappoa, etikkahappoa, glukoosia ja ksyloosia sisältävää synteettistä liuosta. Erotusmateriaaleina käytettiin neljää eri anionin- ja yhtä kationinvaihtohartsia. Kokeiden perusteella tutkittiin anioninvaihtohartsin tyypin ja kolonnin latauksen vaikutusta happoretardaatiotekniikalla saavutettavaan erotustulokseen sekä verrattiin elektrolyyttiekskluusiota happoretardaatioon. Työn tulosten perusteella rikkihappo laimeni happoretardaatiotekniikalla jopa 20-kertaisesti kromatografiakolonniin syötettyyn liuokseen verrattuna, riippumatta kolonnin latauksesta ja anioninvaihtohartsista. Rikkihapon laimenemisen vuoksi happoretardaatio ei soveltunut lignoselluloosapohjaisten väkevähappohydrolysaattien fraktiointiin. Elektrolyyttiekskluusiotekniikalla rikkihapon laimeneminen oli merkittävästi vähäisempää, minkä vuoksi elektrolyyttiekskluusion todettiin soveltuvan happoretardaatiota paremmin lignoselluloosapohjaisten väkevähappohydrolysaattien fraktiointiin.
Resumo:
The first part of this thesis studied the capacity of amino acids and enzymes to catalyze the hydrolysis and condensation of tetraethoxysilane and phenyltrimethoxysilane. Selected amino acids were shown to accelerate the hydrolysis and condensation of tetraethoxysilane under ambient temperature, pressure and at neutral pH (pH 7±0.02). The nature of the side chain of the amino acid was important in promoting hydrolysis and condensation. Several proteases were shown to have a capacity to hydrolyze tri- and tet-ra- alkoxysilanes under the same mild reaction conditions. The second part of this thesis employed an immobilized Candida antarctica lipase B (Novozym-435, N435) to produce siloxane-containing polyesters, polyamides, and polyester amides under solvent-free conditions. Enzymatic activity was shown to be temperature dependent, increasing until enzyme denaturation became the dominant pro-cess, which typically occurred between 120-130ᵒC. The residual activity of N435 was, on average, greater than 90%, when used in the synthesis of disiloxane-containing polyesters, regardless of the polymerization temperature except at the very highest temperatures, 140-150ᵒC. A study of the thermal tolerance of N435 determined that, over ten reaction cycles, there was a decrease in the initial rate of polymerization with each consecutive use of the catalyst. No change in the degree of monomer conversion after a 24 hour reaction cycle was found.
Resumo:
Tesis (Master of Science with orientation in Sustainable Processes) UANL, 2014.
Resumo:
Highly crystalline, ultra fine TiO (anatase) having high surface area has been prepared by thermal hydrolysis of titanyl sulphate 2 solution and characterized using B.E.T surface area measurements, XRD and chemical analysis. The dependence of surface area on concentration of staffing solution, temperature of hydrolysis, duration of boiling and calcination temperature were also studied. As the boiling temperature, duration of boiling and calcination temperature increased, the surface area of TiO formed decreased significantly. 2 On increasing calcination temperature, the crystallite size of TiO also increased and gradually the phase transformation to rutile took 2 place. The onset and completion temperatures of rutilation were 700 and 10008C, respectively