142 resultados para keyhole limpet hemocyanin
Resumo:
We present here the description of genes coding for molluscan hemocyanins. Two distantly related mollusks, Haliotis tuberculata and Octopus dofleini, were studied. The typical architecture of a molluscan hemocyanin subunit, which is a string of seven or eight globular functional units (FUs, designated a to h, about 50 kDa each), is reflected by the gene organization: a series of eight structurally related coding regions in Haliotis, corresponding to FU-a to FU-h, with seven highly variable linker introns of 174 to 3,198 bp length (all in phase 1). In Octopus seven coding regions (FU-a to FU-g) are found, separated by phase 1 introns varying in length from 100 bp to 910 bp. Both genes exhibit typical signal (export) sequences, and in both cases these are interrupted by an additional intron. Each gene also contains an intron between signal peptide and FU-a and in the 3′ untranslated region. Of special relevance for evolutionary considerations are introns interrupting those regions that encode a discrete functional unit. We found that five of the eight FUs in Haliotis each are encoded by a single exon, whereas FU-f, FU-g, and FU-a are encoded by two, three and four exons, respectively. Similarly, in Octopus four of the FUs each correspond to an uninterrupted exon, whereas FU-b, FU-e, and FU-f each contain a single intron. Although the positioning of the introns between FUs is highly conserved in the two mollusks, the introns within FUs show no relationship either in location nor phase. It is proposed that the introns between FUs were generated as the eight-unit polypeptide evolved from a monomeric precursor, and that the internal introns have been added later. A hypothesis for evolution of the ring-like quaternary structure of molluscan hemocyanins is presented.
Resumo:
Pro-phenol oxidase [pro-PO; zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] is present in the hemolymph plasma of the silkworm Bombyx mori. Pro-PO is a heterodimeric protein synthesized by hemocytes. A specific serine proteinase activates both subunits through a limited proteolysis. The amino acid sequences of both subunits were deduced from their respective cDNAs; amino acid sequence homology between the subunits was 51%. The deduced amino acid sequences revealed domains highly homologous to the copper-binding site sequences (copper-binding sites A and B) of arthropod hemocyanins. The overall sequence homology between silkworm pro-PO and arthropod hemocyanins ranged from 29 to 39%. Phenol oxidases from prokaryotes, fungi, and vertebrates have sequences homologous to only the copper-binding site B of arthropod hemocyanins. Thus, silkworm pro-PO DNA described here appears distinctive and more closely related to arthropod hemocyanins. The pro-PO-activating serine proteinase was shown to hydrolyze peptide bonds at the carboxyl side of arginine in the sequence-Asn-49-Arg-50-Phe-51-Gly-52- of both subunits. Amino groups of N termini of both subunits were indicated to be N-acetylated. The cDNAs of both pro-PO subunits lacked signal peptide sequences. This result supports our contention that mature pro-PO accumulates in the cytoplasm of hemocytes and is released by cell rupture, as for arthropod hemocyanins.
Resumo:
Hemocyanins are large copper-containing respiratory proteins that play a role in oxygen transport in many molluscs. In some species only one hemocyanin isoform is present while in others two are expressed. The physiological relevance of these isoforms is unclear and the developmental and tissue-specific expression of hemocyanin genes is largely unknown. Here we show that two hemocyanin genes in the gastropod Haliotis asinina, which encode H. asinina hemocyanin (HaH1) and HaH2 isoforms, are developmentally expressed. These genes initially are expressed in a small number of mesenchyme cells at trochophore and pre-torsional veliger stages, with HaH1 expression slightly preceding HaH2. These cells largely are localized to the visceral mass, although a small number of cells are present in head and foot regions. Following metamorphosis the isoforms show overlapping as well as isoform-specific expression profiles, suggesting some degree of isoform-specific function.
Resumo:
Background: Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens. Results: The hexamerin genes of the honey bee (hex 70a, hex 70b, hex 70c and hex 110) diverge considerably in structure, so that the overall amino acid identity shared among their deduced protein subunits varies from 30 to 42%. Bioinformatics search for motifs in the respective upstream control regions (UCRs) revealed six overrepresented motifs including a potential binding site for Ultraspiracle (Usp), a target of juvenile hormone (JH). The expression of these genes was induced by topical application of JH on worker larvae. The four genes are highly transcribed by the larval fat body, although with significant differences in transcript levels, but only hex 110 and hex 70a are re-induced in the adult fat body in a caste-and sex-specific fashion, workers showing the highest expression. Transcripts for hex 110, hex 70a and hex70b were detected in developing ovaries and testes, and hex 110 was highly transcribed in the ovaries of egg-laying queens. A phylogenetic analysis revealed that HEX 110 is located at the most basal position among the holometabola hexamerins, and like HEX 70a and HEX 70c, it shares potential orthology relationship with hexamerins from other hymenopteran species. Conclusions: Striking differences were found in the structure and developmental expression of the four hexamerin genes in the honey bee. The presence of a potential binding site for Usp in the respective 5' UCRs, and the results of experiments on JH level manipulation in vivo support the hypothesis of regulation by JH. Transcript levels and patterns in the fat body and gonads suggest that, in addition to their primary role in supplying amino acids for metamorphosis, hexamerins serve as storage proteins for gonad development, egg production, and to support foraging activity. A phylogenetic analysis including the four deduced hexamerins and related proteins revealed a complex pattern of evolution, with independent radiation in insect orders.
Resumo:
The bis(mu-hydroxo) complex [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)](PF6)(2) (Me-2[9]aneN(2)S = N,N'-dimethyl-1-thia-4,7-diazacyclononane) results after reaction of [Cu(Me-2[9]aneN(2)S)(MeCN)] (PF6) with dioxygen at -78 degrees C in acetonitrile. The complex has been characterized by X-ray crystallography: orthorhombic, space group Pnma, with a 18.710(3), b 16.758(2), c 9.593(2) Angstrom, and Z = 4. The structure refined to a final R value of 0.051. The complex contains two copper(II) ions bridged by two hydroxo groups with Cu ... Cu 2.866(1) Angstrom. The solid-state magnetic susceptibility study reveals ferromagnetic coupling, the fitting parameters being J = +46+/-5 cm(-1), g = 2.01+/-0.01 and theta = -0.58+/-0.03 K. The frozen-solution e.p.r. spectrum in dimethyl sulfoxide is characteristic of a monomeric copper(II) ion (g(parallel to) 2.300, g(perpendicular to) 2.063; A(parallel to) 156.2 x 10(-4) cm(-1), A(perpendicular to) 9.0 x 10(-4) cm(-1)) with an N2O2 donor set. Thioether coordination to the copper(II) in solution is supported by the presence of an intense absorption assigned to a sigma(S)-->Cu-II LMCT transition at c. 34000 cm(-1). The single-crystal spectrum of [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)] (PF6)(2) (273 K) reveals d-->d transitions at 14500 and 18300 cm(-1) and a weak pi(S)-->Cu-II charge-transfer band at approximately 25000 cm(-1).
Resumo:
In preparing for metamorphosis, insect larvae store a huge amount of proteins in hemolymph, mainly hexamerins. Out of the four hexamerins present in the honeybee larvae, one, HEX 70a, exhibited a distinct developmental pattern, especially since it is also present in adults. Here, we report sequence data and experimental evidence suggesting alternative functions for HEX 70a, besides its well-known role as an amino acid resource during metamorphosis. The hex 70a gene consists of 6 exons and encodes a 684 amino acid chain containing the conserved hemocyanin N, M, and C domains. HEX 70a classifies as an arylphorin since it contains more than 15% of aromatic amino acids. In the fat body of adult workers, hex 70a expression turned out to be a nutrient-limited process. However, the fat body is not the only site for hex 70a expression. Both, transcript and protein subunits were also detected in developing gonads from workers, queens and drones, suggesting a role in ovary differentiation and testes maturation and functioning. In its putative reproductive role, HEX 70a however differs from the yolk protein, vitellogenin, since it was not detected in eggs or embryos. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Jornadas "Ciência nos Açores – que futuro? Tema Ciências Naturais e Ambiente", Ponta Delgada, 7-8 de Junho de 2013.
Resumo:
Fishing decreases the biomass of target species via reduction in the numbers and/or size of individuals. In natural systems, the strength of biological interactions, including predator-prey dynamics, are often density or size-dependent. Hence, changes in the numbers or size of key taxa may be expected to influence biological interactions but their effects do not need to be identical. Here we compare the effects of biomass reduction in populations of the exploited limpet Patella candei. Biomass removal was experimentally achieved by either removing individuals (density reduction) or by replacing large by small individuals (size reduction), while controlling for total limpet biomass in a laboratory-based experiment. At the experiment’s termination, biomass reduction led to proportional changes in area grazed. However, there was no difference whether this was achieved via changes in density or in size. Furthermore, no discernible effects of treatments were evident on different components of the algal assemblage. A field survey also revealed that P. candei biomass explained a greater proportion in variation in the area free of algae than density alone. Our results suggest that loss of biomass in populations of P. candei has quantitatively and qualitatively similar effects on algal cover regardless of whether it is caused by an equivalent (biomass) reduction in the numbers or size of individuals.
Resumo:
Jornadas "Ciência nos Açores – que futuro? Tema Ciências Naturais e Ambiente", Ponta Delgada, 7-8 de Junho de 2013.
Resumo:
World Congress of Malacology, Universidade dos Açores, Ponta Delgada, 21-28 de julho.
Resumo:
World Congress of Malacology, Ponta Delgada, July 22-28, 2013.
Resumo:
Copyright © Marine Biological Association of the United Kingdom, 2014.
Resumo:
Ocean Science Meeting. Hawaii Convention Center, Honolulu, Hawaii, USA, 23-28 de Fevereiro.
Resumo:
Realization that hard coastal infrastructures support lower biodiversity than natural habitats has prompted a wealth of research seeking to identify design enhancements offering ecological benefits. Some studies showed that artificial structures could be modified to increase levels of diversity. Most studies, however, only considered the short-term ecological effects of such modifications, even though reliance on results from short-term studies may lead to serious misjudgements in conservation. In this study, a sevenyear experiment examined how the addition of small pits to otherwise featureless seawalls may enhance the stocks of a highly-exploited limpet. Modified areas of the seawall supported enhanced stocks of limpets seven years after the addition of pits. Modified areas of the seawall also supported a community that differed in the abundance of littorinids, barnacles andmacroalgae compared to the controls. Responses to different treatments (numbers and size of pits) were speciesspecific and, while some species responded directly to differences among treatments, others might have responded indirectly via changes in the distribution of competing species. This type of habitat enhancement can have positive long-lasting effects on the ecology of urban seascapes.Understanding of species interactions could be used to develop a rule-based approach to enhance biodiversity.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies