1000 resultados para inversão cromossômica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A espécie Tayassu tajacu (caititu) é amplamente distribuída no continente americano, distribuindo-se desde o sul dos Estados Unidos até o norte da Argentina. No Brasil, distribui-se por todo o território, sendo uma das principais fontes de proteínas para as populações rurais. Sua criação em cativeiro possibilitaria uma forma de pecuária alternativa para essas populações, desta forma protegendo essa espécie da pressão da caça. Portanto, a citogenética serviria como uma ferramenta potencial para o monitoramento reprodutivo de animais criados em cativeiro, principalmente, quando destinados a fins comerciais. Esse trabalho tem por objetivo determinar o número cromossômico de duas populações criadas em cativeiro. Para este fim, foram analisadas metáfases mitóticas obtidas de cultura de linfócitos a partir de amostras de sangue de 6 animais oriundos de Mossoró (RN), 1 de Ipixuna (PA) e 4 de Uruará (PA). A análise resultou no mesmo padrão cariotípico da espécie encontrado na literatura (2n = 30 cromossomos e NF = 48), além de corresponderem ao padrão sulamericano da espécie, ou seja, sem a presença da translocação entre os cromossomos autossômicos 1 e 8, porém não foram encontradas diferenças entre as populações estudadas. No entanto, foram observados polimorfismos quando comparadas a populações do restante do país, além de populações norte americanas e da Guiana Francesa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os roedores formam uma das mais numerosas e antigas ordens da classe Mammalia. Na América do Sul, a ordem Rodentia compreende cerca de 42% das espécies de mamíferos, sendo que desta parcela mais de 50% pertencem a família Cricetidae, que inclui a subfamília Sigmodontinae. O gênero Hylaeamys está agrupado na tribo Oryzomyini e corresponde a um dos 10 novos gêneros propostos para espécies e grupos de espécies dentro de Oryzomys. Hylaeamys corresponde ao “grupo megacephalus”, sendo constituído pelas espécies H. acritus, H. laticeps, H. megacephalus, H. perenensis, H. oniscus, H. tatei e H. yunganus distribuídas na Venezuela, Trinidad, Guianas, Paraguai e no Brasil, em áreas de floresta tropical amazônica, mata atlântica e cerrado. Este trabalho visa analisar marcadores cromossômicos em duas espécies do gênero Hylaeamys, fornecendo dados que auxiliem na sua caracterização taxonômica e citogenética. Foram trabalhadas dezenove amostras de Hylaeamys megacephalus (HME) e quatro de Hylaeamys oniscus (HON). HME apresenta 2n=54 e HON, 2n=52. Os resultados obtidos por bandeamentos G, C e por hibridização in situ, com sondas de cromossomo total de Hylaeamys megacephalus permitiram determinar as características cromossômicas das espécies em estudo, além de permitir uma análise comparativa entre as mesmas e em relação a Cerradomys langguthi, observando assim suas homeologias e diferenças cariotípicas. As duas espécies de Hylaeamys diferem por um rearranjo tipo fusão/fissão cêntrica onde HON apresenta a associação 14/19 de HME. Esta associação é compartilhada com CLA com inversão (19/14/19). Este trabalho é um marco para estudos de filogenia cromossômica do gênero Hylaeamys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta Tese apresenta dois estudos aplicados à inversão de dados magnetotelúricos. No primeiro deles, os parâmetros obtidos na inversão são as dimensões da malha de parametrização da subsuperfície, sendo conhecida, a priori, a resistividade de uma heterogeneidade e a do seu meio envolvente; no outro estudo, é abordado o uso de operadores de derivadas de ordem maior do que um com a finalidade de estabilizar o problema inverso. No primeiro estudo, os resultados podem ser considerados satisfatórios somente se a informação sobre as resistividades tem erro menor do que 20%. No segundo estudo, os resultados demonstram que o uso de operadores de ordem maior do que um podem ser mais eficazes do que o uso convencional do operador de primeira derivada, pois além de estabilizarem o problema inverso, esses operadores contribuem para melhorar a resolução das heterogeneidades de resistividade da subsuperfície. Ambos os estudos são inéditos, pois a prática de inversão de dados magnetotelúricos consiste de obter como resultado do problema inverso a resistividade dos prismas de uma malha de parametrização de dimensões fixas, usando como estabilizador o operador de primeira derivada. Os modelos usados nos estudos são bidimensionais e representam uma subsuperfície com uma e duas heterogeneidades de forma prismática envolvidas por ambiente homogêneo. O desempenho das técnicas foi testado com dados sintéticos com e sem ruído gaussiano, bem como dados reais do perfil COPROD2. Durante o trabalho, são, ainda, descritas as técnicas de inversão denominadas creeping e jumping e feita uma comparação e avaliação sobre elas. Mostra-se aqui que, ao contrário do que afirmam muitos pesquisadores, a inclusão de informação a priori sore os parâmetros pode ser feita na técnica do creeping com a mesma facilidade com que é feita na técnica do jumping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho apresentamos um estudo da aplicação do regularizador “Variação Total” (VT) na inversão de dados geofísicos eletromagnéticos. O regularizador VT reforça a proximidade entre os parâmetros adjacentes, mas, quando a influência de uma descontinuidade é sentida nos dados, este permite mudanças abruptas sobre os parâmetros. Isso faz com que o método seja uma alternativa válida, quando os dados observados usados na inversão provém de um ambiente geológico com uma distribuição suave de condutividade, mas que pode apresentar descontinuidades em lugares como as interfaces entre as camadas geoelétricas, como na margem de uma zona de óleo ou de um corpo de sal, que podem ser zonas muito resistivas no interior de sedimentos condutivos. Quando, devido a baixa resolução nos dados, o método não tem informações o suficiente para identificar a interface, o regularizador variação total reforça a proximidade entre os parâmetros adjacentes fazendo um transição suave entre as condutividades camadas, da mesma forma que é apresentado pela suavidade global. O método de Variação Total permite que modelos menos suaves sejam alcançados porque na norma L1 a medida de desajuste entre os pares de parâmetros adjacentes, dará o mesmo valor se a variação dos parâmetros é suave ou se a variação é abrupta, o que não é o caso se o mesmo desajuste é medido na norma L2, pois em uma distribuição suave a medida do desajuste é menor, sendo assim favorecida pela minimização desta norma. O uso deste regularizador permite uma melhor estimativa do tamanho de um corpo, seja ele resistivo ou condutivo. O trabalho está apresentado na forma de três artigos, cada um descrevendo uma etapa no desenvolvimento do problema da inversão, seguindo uma sequência de complexidade crescente no problema direto. O primeiro artigo neste trabalho é intitulado “Inversão de dados do CSEM marinho 1D de meio estratificado anisotrópico com o regularizador Variação Total”. Este descreve o passo inicial no desenvolvimento do problema: a inversão de dados do CSEM marinho de modelos estratificados 1D com anisotropia na condutividade das camadas. Este problema se presta bem para este desenvolvimento, porque tem solução computacional muito mais rápida do que o 2D, e nele já estão presentes as características principais dos dados do método CSEM marinho, como a largura muito grande da faixa de amplitudes medidas em um levantamento, e a baixa resolução, inerente às baixas frequências empregadas. A anisotropia acrescenta uma dificuldade a mais no problema, por aumentar o nível de ambiguidade nos dados e demandar ainda mais informação do que no caso puramente isotrópico. Os resultados mostram que a aplicação dos vínculos de igualdade do método VT permite a melhor identificação de uma camada alvo resistiva do que a simples aplicação dos vínculos tradicionais de suavidade. Até onde podemos aferir, esta solução se mostra superior a qualquer outra já publicada para este problema. Além de ter sido muito importante para o desenvolvimento de códigos em paralelo. O segundo artigo apresentado aqui, “Inversão de dados Magnetotelúricos com o regularizador Variação Total e o uso da matriz de sensibilidade aproximada”, trata da inversão de dados do método Magnetotelúrico em ambientes 2D. Este problema demanda um esforço computacional muito maior do que o primeiro. Nele, estudamos a aplicação do método dos estados adjuntos para gerar uma boa aproximação para as derivadas necessárias para a construção da matriz de sensibilidade usada na inversão. A construção da matriz de sensibilidade é a etapa que demanda mais tempo no processo de inversão, e o uso do método de estados adjuntos foi capaz de reduzir muito este tempo, gerando derivadas com um bom nível de aproximação. Esta etapa da pesquisa foi fundamental pelo problema direto ser matematicamente e computacionalmente muito mais simples do que o do CSEM marinho 2D. Novamente em comparação com a aplicação do regularizador de suavidade global, o regularizador de Variação Total permitiu, neste problema, uma melhor delimitação das bordas de heterogeneidades bidimensionais. A terceira parte deste trabalho, apresentada no artigo “Inversão de dados do CSEM marinho 2.5D com o regularizador Variação Total e o uso da matriz de sensibilidade aproximada”, apresenta a apliação do método de Variação Total ao problema da inversão de dados CSEM marinho 2.5D. Usamos o método dos estados adjuntos para gerar uma boa aproximação para as derivadas necessárias para a construção da matriz de sensibilidade usada na inversão, acelerando assim o processo de inversão. Para deixar o processo de inversão ainda mais rápido, lançamos mão da programação em paralelo com o uso de topologia. A comparação entre a aplicação do regularizador de suavidade global, e o regularizador de Variação Total permitiu, assim como nos casos anteriores, uma melhor delimitação das bordas de heterogeneidades bidimensionais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho compilamos informações sobre um grande número de medidas de velocidade de grupo para ondas Rayleigh do modo fundamental, com período até 100 segundos. Tais dados consistiram de informações retiradas da literatura geofísica e cobriram toda a Terra. Parte dos dados foi organizada em trabalhos anteriores e uma segunda parte foi apresentada aqui de forma inédita. Para a América do Sul, selecionamos os principais conjuntos de dados de tais ondas e elaboramos diversos perfis onde a distribuição de velocidade de ondas cisalhantes foi obtida a partir da inversão das curvas de dispersão de velocidade de grupo. Tais perfis serviram para termos uma ideia inicial da estrutura interna da Terra em nosso continente. Com o conjunto global de dados de velocidade de grupo foi possível obtermos os mapas de distribuição lateral de valores de velocidade para cada período referencial entre 20 e 100 segundos. Tais mapas foram produzidos da mesma forma que os mapas de velocidade de fase de ROSA (1986), onde a amostragem for para realizada para blocas medindo 10x10 graus, englobando toda a Terra, em projeção mercator. O valor de velocidade de grupo em cada bloco, para cada período, foi obtido a partir da inversão estocástica dos dados de anomalia de velocidade em relação aos modelos regionalizados de JORDAN (1981) com os valores de velocidade de grupo de ROSA et al. (1992). Os mapas de velocidade de grupo obtidos aqui foram então empregados, na América do Sul, com os valores de velocidade de fase dos mapas obtidos por ROSA (1986). Assim, foi possível determinarmos, em profundidade, os mapas de variação de velocidade de onda cisalhante e os mapas de distribuição de valores de densidade. Com isto, pudemos construir o primeiro mapa de profundidade do Moho (todo do Manto Superior) da América do Sul.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uma técnica para a inversão de dados magnetotelúricos é apresentada neste trabalho. Dois tipos de dados são tratados aqui, dados gerados por modelos unidimensionais com anisotropia na condutividade das camadas e dados bi-dimensionais de levantamentos do método EMAP (ElectroMagnetic Array Profiling). Em ambos os casos fazemos a inversão usando vínculos aproximados de igualdade para estabilizar as soluções. Mostramos as vantagens e as limitações do uso destes vínculos nos processos de inversão. Mesmo vinculada a inversão ainda pode se tornar instável. Para inverter os dados 2-D do EMAP, apresentamos um processo que consiste de três partes: 1 – A construção de um modelo interpretativo e da aproximação inicial para a inversão a partir dos dados de seções de resistividade aparente filtradas pelo processo de filtragem do EMAP; 2 – a inclusão de uma camada de corpos pequenos aflorantes, chamada de camada destatic shift, aos modelos interpretativos para resolver as fontes de distorções estáticas que contaminam os dados; 3 – o uso dos vínculos aproximados de igualdade absoluta para estabilizar as soluções. Os dois primeiros passos nos permitem extrair o máximo de informação possível dos dados, enquanto que o uso dos vínculos de igualdade nos permite incluir informação a priori que possua significado físico e geológico. Com estes passos, obtemos uma solução estável e significativa. Estudaremos o método em dados sintéticos de modelos bi-dimensionais e em dados reais de uma linha de EMAP feita na Bacia do Paraná.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apresentamos três novos métodos estáveis de inversão gravimétrica para estimar o relevo de uma interface arbitrária separando dois meios. Para a garantia da estabilidade da solução, introduzimos informações a priori sobre a interface a ser mapeada, através da minimização de um (ou mais) funcional estabilizante. Portanto, estes três métodos se diferenciam pelos tipos de informação físico-geológica incorporados. No primeiro método, denominado suavidade global, as profundidades da interface são estimadas em pontos discretos, presumindo-se o conhecimento a priori sobre o contraste de densidade entre os meios. Para a estabilização do problema inverso introduzimos dois vínculos: (a) proximidade entre as profundidades estimadas e verdadeiras da interface em alguns pontos fornecidas por furos de sondagem; e (b) proximidade entre as profundidades estimadas em pontos adjacentes. A combinação destes dois vínculos impõe uma suavidade uniforme a toda interface estimada, minimizando, simultaneamente em alguns pontos, os desajustes entre as profundidades conhecidas pelas sondagens e as estimadas nos mesmos pontos. O segundo método, denominado suavidade ponderada, estima as profundidades da interface em pontos discretos, admitindo o conhecimento a priori do contraste de densidade. Neste método, incorpora-se a informação geológica que a interface é suave, exceto em regiões de descontinuidades produzidas por falhas, ou seja, a interface é predominantemente suave porém localmente descontínua. Para a incorporação desta informação, desenvolvemos um processo iterativo em que três tipos de vínculos são impostos aos parâmetros: (a) ponderação da proximidade entre as profundidades estimadas em pontos adjacentes; (b) limites inferior e superior para as profundidades; e (c) proximidade entre todas as profundidades estimadas e um valor numérico conhecido. Inicializando com a solução estimada pelo método da suavidade global, este segundo método, iterativamente, acentua as feições geométricas presentes na solução inicial; ou seja, regiões suaves da interface tendem a tornar-se mais suaves e regiões abruptas tendem a tornar-se mais abruptas. Para tanto, este método atribui diferentes pesos ao vínculo de proximidade entre as profundidades adjacentes. Estes pesos são automaticamente atualizados de modo a acentuar as descontinuidades sutilmente detectadas pela solução da suavidade global. Os vínculos (b) e (c) são usados para compensar a perda da estabilidade, devida à introdução de pesos próximos a zero em alguns dos vínculos de proximidade entre parâmetros adjacentes, e incorporar a informação a priori que a região mais profunda da interface apresenta-se plana e horizontal. O vínculo (b) impõe, de modo estrito, que qualquer profundidade estimada é não negativa e menor que o valor de máxima profundidade da interface conhecido a priori; o vínculo (c) impõe que todas as profundidades estimadas são próximas a um valor que deliberadamente viola a profundidade máxima da interface. O compromisso entre os vínculos conflitantes (b) e (c) resulta na tendenciosidade da solução final em acentuar descontinuidades verticais e apresentar uma estimativa suave e achatada da região mais profunda. O terceiro método, denominado mínimo momento de inércia, estima os contrastes de densidade de uma região da subsuperfície discretizada em volumes elementares prismáticos. Este método incorpora a informação geológica que a interface a ser mapeada delimita uma fonte anômala que apresenta dimensões horizontais maiores que sua maior dimensão vertical, com bordas mergulhando verticalmente ou em direção ao centro de massa e que toda a massa (ou deficiência de massa) anômala está concentrada, de modo compacto, em torno de um nível de referência. Conceitualmente, estas informações são introduzidas pela minimização do momento de inércia das fontes em relação ao nível de referência conhecido a priori. Esta minimização é efetuada em um subespaço de parâmetros consistindo de fontes compactas e apresentando bordas mergulhando verticalmente ou em direção ao centro de massa. Efetivamente, estas informações são introduzidas através de um processo iterativo inicializando com uma solução cujo momento de inércia é próximo a zero, acrescentando, em cada iteração, uma contribuição com mínimo momento de inércia em relação ao nível de referência, de modo que a nova estimativa obedeça a limites mínimo e máximo do contraste de densidade, e minimize, simultaneamente, os desajustes entre os dados gravimétricos observados e ajustados. Adicionalmente, o processo iterativo tende a "congelar" as estimativas em um dos limites (mínimo ou máximo). O resultado final é uma fonte anômala compactada em torno do nível de referência cuja distribuição de constraste de densidade tende ao limite superior (em valor absoluto) estabelecido a priori. Estes três métodos foram aplicados a dados sintéticos e reais produzidos pelo relevo do embasamento de bacias sedimentares. A suavidade global produziu uma boa reconstrução do arcabouço de bacias que violam a condição de suavidade, tanto em dados sintéticos como em dados da Bacia do Recôncavo. Este método, apresenta a menor resolução quando comparado com os outros dois métodos. A suavidade ponderada produziu uma melhoria na resolução de relevos de embasamentos que apresentam falhamentos com grandes rejeitos e altos ângulos de mergulho, indicando uma grande potencialidade na interpretação do arcabouço de bacias extensionais, como mostramos em testes com dados sintéticos e dados do Steptoe Valley, Nevada, EUA, e da Bacia do Recôncavo. No método do mínimo momento de inércia, tomou-se como nível de referência o nível médio do terreno. As aplicações a dados sintéticos e às anomalias Bouguer do Graben de San Jacinto, California, EUA, e da Bacia do Recôncavo mostraram que, em comparação com os métodos da suavidade global e ponderada, este método estima com excelente resolução falhamentos com pequenos rejeitos sem impor a restrição da interface apresentar poucas descontinuidades locais, como no método da suavidade ponderada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A inversão de momentos de fonte gravimétrica tridimensional é analisada em duas situações. Na primeira se admite conhecer apenas a anomalia. Na segunda se admite conhecer, além da anomalia, informação a priori sobre o corpo anômalo. Sem usar informação a priori, mostramos que é possível determinar univocamente todo momento, ou combinação linear de momentos, cujo núcleo polinomial seja função apenas das coordenadas Cartesianas que definem o plano de medida e que tenha Laplaciano nulo. Além disso, mostramos que nenhum momento cujo núcleo polinomial tenha Laplaciano não nulo pode ser determinado. Por outro lado, informação a priori é implicitamente introduzida se o método de inversão de momentos se baseia na aproximação da anomalia pela série truncada obtida de sua expansão em multipolos. Dado um centro de expansão qualquer, o truncamento da série impõe uma condição de regularização sobre as superfícies equipotenciais do corpo anômalo, que permite estimar univocamente os momentos e combinações lineares de momentos que são os coeficientes das funções-bases da expansão em multipolos. Assim, uma distribuição de massa equivalente à real é postulada, sendo o critério de equivalência especificado pela condição de ajuste entre os campos observado e calculado com a série truncada em momentos de uma ordem máxima pré-estabelecida. Os momentos da distribuição equivalente de massa foram identificados como a solução estacionária de um sistema de equações diferenciais lineares de 1a. ordem, para a qual se asseguram unicidade e estabilidade assintótica. Para a série retendo momentos até 2a. ordem, é implicitamente admitido que o corpo anômalo seja convexo e tenha volume finito, que ele esteja suficientemente distante do plano de medida e que a sua distribuição espacial de massa apresente três planos ortogonais de simetria. O método de inversão de momentos baseado na série truncada (IMT) é adaptado para o caso magnético. Para este caso, mostramos que, para assegurar unicidade e estabilidade assintótica, é suficiente pressupor, além da condição de regularização, a condição de que a magnetização total tenha direção e sentido constantes, embora desconhecidos. O método IMT baseado na série de 2a. ordem (IMT2) é aplicado a anomalias gravimétricas e magnéticas tridimensionais sintéticas. Mostramos que se a fonte satisfaz as condições exigidas, boas estimativas da sua massa ou vetor momento de dipolo anômalo total, da posição de seu centro de massa ou de momento de dipolo e das direções de seus três eixos principais são obtidas de maneira estável. O método IMT2 pode falhar parcialmente quando a fonte está próxima do plano de medida ou quando a anomalia tem efeitos localizados e fortes de um corpo pequeno e raso e se tenta estimar os parâmetros de um corpo grande e profundo. Definimos por falha parcial a situação em que algumas das estimativas obtidas podem não ser boas aproximações dos valores verdadeiros. Nas duas situações acima descritas, a profundidade do centro da fonte (maior) e as direções de seus eixos principais podem ser erroneamente estimadas, embora que a massa ou vetor momento de dipolo anômalo total e a projeção do centro desta fonte no plano de medida ainda sejam bem estimados. Se a direção de magnetização total não for constante, o método IMT2 pode fornecer estimativas erradas das direções dos eixos principais (mesmo se a fonte estiver distante do plano de medida), embora que os demais parâmetros sejam bem estimados. O método IMT2 pode falhar completamente se a fonte não tiver volume finito. Definimos por falha completa a situação em que qualquer estimativa obtida pode não ser boa aproximação do valor verdadeiro. O método IMT2 é aplicado a dados reais gravimétricos e magnéticos. No caso gravimétrico, utilizamos uma anomalia situada no estado da Bahia, que se supõe ser causada por um batólito de granito. Com base nos resultados, sugerimos que as massas graníticas geradoras desta anomalia tenham sido estiradas na direção NNW e adelgaçadas na direção vertical durante o evento compressivo que causou a orogênese do Sistema de Dobramentos do Espinhaço. Além disso, estimamos que a profundidade do centro de massa da fonte geradora é cerca de 20 km. No caso magnético, utilizamos a anomalia de um monte submarino situado no Golfo da Guiné. Com base nos resultados, estimamos que o paleopolo magnético do monte submarino tem latitude 50°48'S e longitude 74°54'E e sugerimos que não exista contraste de magnetização expressivo abaixo da base do monte submarino.