961 resultados para inorganic cations
Resumo:
The reactions of distonic 4-(N, N, N-trimethylammonium)-2-methylphenyl and 5-(N, N, N-trimethylammonium)-2-methylphenyl radical cations (m/z 149) with O-2 are studied in the gas phase using ion-trap mass spectrometry. Photodissociation (PD) of halogenated precursors gives rise to the target distonic charge-tagged methylphenyl radical whereas collision-induced dissociation (CID) is found to produce unreactive radical ions. The PD generated distonic radicals, however, react rapidly with O-2 to form \[M + O2](center dot+) and \[M + O-2 - OH](center dot+) ions, detected at m/z 181 and m/z 164, respectively. Quantum chemical calculations using G3SX(MP3) and M06-2X theories are deployed to examine key decomposition pathways of the 5-(N, N, N-trimethylammonium)-2-methylphenylperoxyl radical and rationalise the observed product ions. The prevailing product mechanism involves a 1,5- H shift in the peroxyl radical forming a QOOH-type intermediate that subsequently eliminates (OH)-O-center dot to yield charge-tagged 2-quinone methide. Our study suggests that the analogous process should occur for the neutral methylphenyl + O-2 reaction, thus serving as a plausible source of (OH)-O-center dot radicals in combustion environments. Grants: ARC/DP0986738, ARC/DP130100862
Resumo:
Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC16:0/18:1) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC18:1/16:0), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, \[PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating \[PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of \[PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry. Grant Number ARC/CE0561607, ARC/DP120102922
Resumo:
Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from materials characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures, comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures but little attention has been given to the effect on the light scattering properties in relation to DLS. In this work, small (core size < 5 nm) core-shell nanoparticles were used as a case study to measure the capping thickness of a layer of dodecanethiol (DDT) on Au and ZnO nanoparticles by DLS. We find that the DDT shell has very little effect on the scattering properties of the inorganic core and hence can be ignored to a first approximation. However, this results in conventional DLS analysis overestimating the hydrodynamic size in the volume and number weighted distributions. By introducing a simple correction formula that more accurately yields hydrodynamic size distributions a more precise determination of the molecular shell thickness is obtained. With this correction, the measured thickness of the DDT shell was found to be 7.3 ± 0.3 Å, much less than the extended chain length of 16 Å. This organic layer thickness suggests that on small nanoparticles, the DDT monolayer adopts a compact disordered structure rather than an open ordered structure on both ZnO and Au nanoparticle surfaces. These observations are in agreement with published molecular dynamics results.
Resumo:
We have used electronic structure calculations to investigate the 1,2-dehydration of alcohols as a model for water loss during the pyrolysis of carbohydrates found in biomass. Reaction enthalpies and energy barriers have been calculated for neat alcohols, protonated alcohols and alcohols complexed to alkali metal ions (Li + and Na +). We have estimated pre-exponential A factors in order to obtain gas phase rate constants. For neat alcohols, the barrier to 1,2-dehydration is about 67 kcal mol -1, which is consistent with the limited experimental data. Protonation and metal complexation significantly reduce this activation barrier and thus, facilitate more rapid reaction. With the addition of alkali metals, the rate of dehydration can increase by a factor of 10 8 while addition of a proton can lead to an increase of a factor of 10 23.
Resumo:
2,3-Dimethyl-2,3-dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour-phase detection systems. In this study, the formation and detection of gas-phase \[M+H](+), \[M+Li](+), \[M+NH(4)](+) and \[M+Na](+) adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The \[M+H](+) ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50 degrees C. In contrast, the \[M+Na](+) ion demonstrated increasing ion abundance at source temperatures up to 105 degrees C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision-induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source-formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the \[M+Na](+) adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright (C) 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
In organic-inorganic nanocomposites, interfacial regions are primarily influenced by the dispersion uniformity of nanoparticles and the strength of interfacial bonds between the nanoparticles and the polymer matrix. The insulating performance of organic-inorganic dielectric nanocomposites is highly influenced by the characteristics of interfacial regions. In this study, we prepare polyethylene oxide (PEO)-like functional layers on silica nanoparticles through plasma polymerization. Epoxy resin/silica nanocomposites are subsequently synthesized with these plasma-polymerized nanoparticles. It is found that plasma at a low power (i.e., 10 W) can significantly increase the concentration of C-O bonds on the surface of silica nanoparticles. This plasma polymerized thin layer can not only improve the dispersion uniformity by increasing the hydrophilicity of the nanoparticles, but also provide anchoring sites to enable the formation of covalent bonds between the organic and inorganic phases. Furthermore, electrical tests reveal improved electrical treeing resistance and decreased dielectric constant of the synthesized nanocomposites, while the dielectric loss of the nanocomposites remains unchanged as compared to the pure epoxy resin.
Resumo:
1,4-Diazabicyclo[2.2.2]octane (DABCO) forms well-defined co-crystals with 1,2-diiodotetrafluorobenzene (1,2-DITFB), [(1,2-DITFB)2DABCO], and 1,3,5-triiodotrifluorobenzene, [(1,3,5-TITFB)2DABCO]. Both systems exhibited lower-than-expected supramolecular connectivity, which inspired a search for polymorphs in alternative crystallization solvents. In dichloromethane solution, the Menshutkin reaction was found to occur, generating chloride anions and quaternary ammonium cations through the reaction between the solvent and DABCO. The controlled in situ production of chloride ions facilitated the crystallization of new halogen bonded networks, DABCO–CH2Cl[(1,2-DITFB)Cl] (zigzag X-bonded chains) and (DABCO–CH2Cl)3[(1,3,5-TITFB)2Cl3]·CHCl3 (2D pseudo-trigonal X-bonded nets displaying Borremean entanglement), propagating with charge-assisted C–I···Cl– halogen bonds. The method was found to be versatile, and substitution of DABCO with triethylamine (TEA) gave (TEA-CH2Cl)3[(1,2-DITFB)Cl3]·4(H2O) (mixed halogen bond hydrogen bond network with 2D supramolecular connectivity) and TEA-CH2Cl[(1,3,5-TITFB)Cl] (tightly packed planar trigonal nets). The co-crystals were typically produced in high yield and purity with relatively predictable supramolecular topology, particularly with respect to the connectivity of the iodobenzene molecules. The potential to use this synthetic methodology for crystal engineering of halogen bonded architectures is demonstrated and discussed.
Resumo:
This study investigated the hypothesis that the chromosomal genotoxicity of inorganic mercury results from interaction(s) with cytoskeletal proteins. Effects of Hg2+ salts on functional activities of tubulin and kinesin were investigated by determining tubulin assembly and kinesin-driven motility in cell-free systems. Hg2+ inhibits microtubule assembly at concentrations above 1 μM, and inhibition is complete at about 10 μM. In this range, the tubulin assembly is fully (up to 6 μM) or partially (∼6-10 μM) reversible. The inhibition of tubulin assembly by mercury is independent of the anion, chloride or nitrate. The no-observed-effect- concentration for inhibition of microtubule assembly in vitro was 1 μM Hg2+, the IC50 5.8 μM. Mercury(II) salts at the IC 50 concentrations partly inhibiting tubulin assembly did not cause the formation of aberrant microtubule structures. Effects of mercury salts on the functionality of the microtubule motility apparatus were studied with the motor protein kinesin. By using a "gliding assay" mimicking intracellular movement and transport processes in vitro, HgCl2 affected the gliding velocity of paclitaxel-stabilised microtubules in a clear dose-dependent manner. An apparent effect is detected at a concentration of 0.1 μM and a complete inhibition is reached at 1 μM. Cytotoxicity of mercury chloride was studied in V79 cells using neutral red uptake, showing an influence above 17 μM HgCl2. Between 15 and 20 μM HgCl2 there was a steep increase in cell toxicity. Both mercury chloride and mercury nitrate induced micronuclei concentration-dependently, starting at concentrations above 0.01 μM. CREST analyses on micronuclei formation in V79 cells demonstrated both clastogenic (CREST-negative) and aneugenic effects of Hg2+, with some preponderance of aneugenicity. A morphological effect of high Hg2+ concentrations (100 μM HgCl2) on the microtubule cytoskeleton was verified in V79 cells by immuno-fluorescence staining. The overall data are consistent with the concept that the chromosomal genotoxicity could be due to interaction of Hg2+ with the motor protein kinesin mediating cellular transport processes. Interactions of Hg 2+ with the tubulin shown by in vitro investigations could also partly influence intracellular microtubule functions leading, together with the effects on the kinesin, to an impaired chromosome distribution as shown by the micronucleus test.
Resumo:
Hard and soft: Binding of inorganic Pt@Fe3O4 Janus particles to WS2 nanotubes through their Pt or Fe3O4 domains is governed by the difference in Pearson hardness: the soft Pt block has a higher sulfur affinity than the harder magnetite face; thus the binding proceeds preferentially through the Pt face. This binding preference can be reversed by masking the Pt face with an organic protecting group.
Resumo:
Infectious diseases such as SARS, influenza and bird flu may spread exponentially throughout communities. In fact, most infectious diseases remain major health risks due to the lack of vaccine or the lack of facilities to deliver the vaccines. Conventional vaccinations are based on damaged pathogens, live attenuated viruses and viral vectors. If the damage was not complete, the vaccination itself may cause adverse effects. Therefore, researchers have been prompted to prepare viable replacements for the attenuated vaccines that would be more effective and safer to use. DNA vaccines are generally composed of a double stranded plasmid that includes a gene encoding the target antigen under the transcriptional directory and control of a promoter region which is active in cells. Plasmid DNA (pDNA) vaccines allow the foreign genes to be expressed transiently in cells, mimicking intracellular pathogenic infection and inducing both humoral and cellular immune responses. Currently, because of their highly evolved and specialized components, viral systems are the most effective means for DNA delivery, and they achieve high efficiencies (generally >90%), for both DNA delivery and expression. As yet, viral-mediated deliveries have several limitations, including toxicity, limited DNA carrying capacity, restricted target to specific cell types, production and packing problems, and high cost. Thus, nonviral systems, particularly a synthetic DNA delivery system, are highly desirable in both research and clinical applications.
Resumo:
Objective Certain mutations in ANKH, which encodes a multiple-pass transmembrane protein that regulates inorganic pyrophosphate (PPi) transport, are linked to autosomal-dominant familial chondrocalcinosis. This study investigated the potential for ANKH sequence variants to promote sporadic chondrocalcinosis. Methods ANKH variants identified by genomic sequencing were screened for association with chondrocalcinosis in 128 patients with severe sporadic chondrocalcinosis or pseudogout and in ethnically matched healthy controls. The effects of specific variants on expression of common markers were evaluated by in vitro transcription/translation. The function of these variants was studied in transfected human immortalized CH-8 articular chondrocytes. Results Sporadic chondrocalcinosis was associated with a G-to-A transition in the ANKH 5′-untranslated region (5′-UTR) at 4 bp upstream of the start codon (in homozygotes of the minor allele, genotype relative risk 6.0, P = 0.0006; overall genotype association P = 0.02). This -4-bp transition, as well as 2 mutations previously linked with familial and sporadic chondrocalcinosis (+14 bp C-to-T and C-terminal GAG deletion, respectively), but not the French familial chondrocalcinosis kindred 143-bp T-to-C mutation, increased reticulocyte ANKH transcription/ANKH translation in vitro. Transfection of complementary DNA for both the wild-type ANKH and the -4-bp ANKH protein variant promoted increased extracellular PPi in CH-8 cells, but unexpectedly, these ANKH mutants had divergent effects on the expression of extracellular PPi and the chondrocyte hypertrophy marker, type X collagen. Conclusion A subset of sporadic chondrocalcinosis appears to be heritable via a -4-bp G-to-A ANKH 5′-UTR transition that up-regulates expression of ANKH and extracellular PPi in chondrocyte cells. Distinct ANKH mutations associated with heritable chondrocalcinosis may promote disease by divergent effects on extracellular PPi and chondrocyte hypertrophy, which is likely to mediate differences in the clinical phenotypes and severity of the disease.
Resumo:
Nanofibers of sodium vanadate, consisting of very thin negatively charged layers and exchangeable sodium ions between the layers, are efficient sorbents for the removal of radioactive 137Cs+ and 85Sr2+ cations from water. The exchange of 137Cs+ or 85Sr2+ ions with the interlayer Na+ ions eventually triggered structural deformation of the thin layers, trapping the 137Cs+ and 85Sr2+ ions in the nanofibers. Furthermore, when the nanofibers were dispersed in a AgNO3 solution at pH >7, well-dispersed Ag2O nanocrystals formed by firmly anchoring themselves on the fiber surfaces along planes of crystallographic similarity with those of Ag2O. These nanocrystals can efficiently capture I– anions by forming a AgI precipitate, which was firmly attached to the substrates. We also designed sorbents that can remove 137Cs+ and 125I– ions simultaneously for safe disposal by optimizing the Ag2O loading and sodium content of the vanadate. This study confirms that sorbent features such as fibril morphology, negatively charged thin layers and readily exchangeable Na+ ions between the layers, and the crystal planes for the formation of a coherent interface with Ag2O nanocrystals on the fiber surface are very important for the simultaneous uptake of cations and anions.
Resumo:
A detailed investigation of Y0.5Ca0.5MnO3 with a very small radius of the A-site cations ([r(A)] approximate to 1.13 Angstrom reveals the occurrence of a charge-ordering transition in the paramagnetic state, at a relatively high temperature of 260 K. The orthorhombic lattice distortion, as measured by the dimensionless index D, is large (similar to 1.75%) over the entire 300-100 K range, but the antiferromagnetic interactions become prominent only at low temperatures (< 160 K). The charge-ordering gap in Y0.5Ca0.5MnO3, measured by low-temperature vacuum tunnelling spectroscopy, is large (similar to 0.5 eV) and the charge-ordered state is unaffected by the application of a magnetic field of 6 T. The study indicates that the nature of charge-ordering in Y0.5Ca0.5MnO3 which is dominated by the cooperative Jahn-Teller effect and the associated lattice distortion is distinctly different from analogous manganates with larger [r(A)].
Resumo:
The photocatalytic ability of cubic Bi1.5ZnNb1.5O7 (BZN) pyrochlore for the decolorization of an acid orange 7 (AO7) azo dye in aqueous solution under ultraviolet (UV) irradiation has been investigated for the first time. BZN catalyst powders prepared using low temperature sol-gel and higher temperature solid-state methods have been evaluated and their reaction rates have been compared.The experimental band gap energy has been estimated from the optical absorption edge and has been used as reference for theoretical calculations. The electronic band structure of BZN has been investigated using first-principles density functional theory (DFT) calculations for random, completely and partially ordered solid solutions of Zn cations in both the A and B sites of the pyrochlore structure.The nature of the orbitals in the valence band (VB) and the conduction band (CB) has been identified and the theoretical band gap energy has been discussed in terms of the DFT model approximations.
Resumo:
The correlation between magnetic and transport properties is examined by studying poly(4,4'-methylenedianiline)(PMDA) salts and their bases using EPR and conductivity measurements. Five different PMDA salts (doped polymers)were prepared by chemical polymerization of 4,4'-methylenedianiline using different protonic acids. The PMDA bases were obtained by dedoping the salts using ammonium hydroxide. Ambient temperature electrical conductivity measurements show evidence for the doped PMDA system to be highly disordered. The EPR spectra of the samples were recorded in the range 20-200 "C, and the results were analyzed on the basis of the polaron-bipolaron model, which is typical of nondegenerate systems. Both PMDA salts and their bases consist of self-trapped, highly mobile polarons or radical cations. EPR studies on PMDA salts show evidence for the presence of thermally activated and temperature independent (or Pauli type) paramagnetism while the bases show thermally activated, Pauli and Curie-Weiss types of paramagnetism. The paramagnetism arises due to polarons.It is proposed that charge transport takes place through both polarons and bipolarons.