977 resultados para inhibitory interneurons
Resumo:
Colonial spiders evolved a differential prey-capture behaviour in concert with their venom chemistry, which may be a source of novel drugs. Some highly active tetrahydro-beta-carboline (TH beta C) toxins were recently isolated from the venom of the colonial spider Parawixia bistriata; the spiders use these toxins as part of their chemical arsenal to kill and/or paralyze preys. The major TH beta C compound isolated from this venom was identified as 6-hydroxytrypargine, also known as PwTX-I. Most natural compounds of animal origin occur in low abundance, and the natural abundance of PwTX-I is insufficient for complete functional characterization. Thus, PwTx-I was synthesized using a Pictet-Spengler condensation strategy, and the stereoisomers of the synthetic toxin were separated by chiral chromatography. The fraction of venom containing a mixture of three natural TH beta C toxins and enantiomers of PwTx-I were analyzed for inhibition of monoamine oxidase (MAO)-A and -B and for toxicity to insects. We reveal that the mixture of the natural TH beta C toxins, as well as the enantiomers of PwTx-I, were non-competitive inhibitors of MAO-A and MAO-B and caused potent paralysis of honeybees. The (-)-PwTX-I enantiomer is 2-fold more potent than the (+)-PwTX-I enantiomer in the assays performed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An experiment explored the hypothesis that inhibitory ability helps people stop themselves from engaging in socially inappropriate behavior. All participants completed a Stroop color-naming task, after which half of the participants were asked to remember an eight-digit number (inducing divided attention). Participants were then offered an unfamiliar and visually unappetizing food product (a chicken foot) under conditions of either low or high social pressure to pretend that it was appealing. Participants who had full attention available and were under pressure to pretend the food was appealing were least likely to emit a negative response, and performance on the Stroop task predicted the degree to which they successfully restrained negative responses. These results suggest that the cognitive ability to inhibit unwanted information facilitates socially appropriate behavior.
5-HT1A receptors of the lateral septum regulate inhibitory avoidance but not escape behavior in rats
Resumo:
Serotonin in the lateral septum (LS) has been implicated in the modulation of defensive behaviors and in anxiety. However, it is currently unknown whether changes in 5-HT mechanisms in this brain area may selectively affect defensive responses associated with specific subtypes of anxiety disorders recognized in clinical settings. To address this question, we evaluated the effect of the intra-LS injection of the 5-HT1A/7 receptor agonist 8-CH-DPAT (0.6, 3.0, 15.0 nmol) in male Wistar rats exposed to the elevated T-maze animal model of anxiety. This test allows the measurement of two behavioral defensive responses in the same rat: inhibitory avoidance and escape behavior. In clinical terms, these responses have been respectively related to generalized anxiety and panic disorder. The effects of 8-OH-DPAT were compared to those caused by a standard anxiolytic compound, the benzodiazepine receptor agonist midazolam (MDZ, 20 nmol). We also investigated whether the intra-LS injection of the 5-HT1A receptor antagonist WAY-100635 (0.37 nmol) was able to block the effects of 8-OH-DPAT. All animals were also tested in an open field for locomotor activity assessments. Results showed that whereas intra-LS administration of MDZ decreased avoidance latencies, suggesting an anxiolytic action, 8-OH-DPAT caused the opposite effect. Neither drug affected the escape performance. Intra-LS administration of WAY-100635 blocked the anxiogenic effect caused by 8-OH-DPAT. No changes to locomotion were detected in the open field. The data suggests that LS 5-HT1A receptors are involved in the control of inhibitory avoidance behavior and that a failure in this regulatory mechanism may be of importance to the physiopathology of generalized anxiety disorder. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.
Resumo:
Stromal cells from pediatric myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) associated with MDS(MDS-AML) present high expression of leukemia inhibitor factor (LIF). We demonstrated using mitogen-activated protein kinase ( MAPK) inhibitors that in stromal cells from pediatric MDS and MDS-AML, p38MAPK was critical in serum-induced secretion of LIF. The serum induction of phosphorylated p38MAPK form was observed only in stromal cells from healthy children, whereas in MDS and MDS-AML basal levels were maintained suggesting constitutive p38MAPK activation. Our study suggested the possible importance in pediatric MDS of p38MAPK signaling pathway which may be a future therapeutic target. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In a previous study, we found that the cytokine (human) leukemia inhibitory factor (hLIF) significantly reduced plasma cholesterol levels and the accumulation of lipid in aortic tissues of cholesterol-fed rabbits after 4 weeks of treatment. The mechanisms by which this occurs were investigated in the present study. This involved examining the effect of hLIF on (1) the level of plasma cholesterol at different times throughout the 4-week treatment and diet period; (2) smooth muscle cell (SMC) and macrophage-derived foam cell formation in vitro; and (3) LDL receptor expression and uptake in the human hepatoma cell line HepG2. At time zero, an osmotic minipump (2-mL capacity; infusion rate, 2.5 mu L/h; 28 days) containing either hLIF (30 mu g.kg(-1).d(-1)) or saline was inserted into the peritoneal cavity of New Zealand White rabbits (N=24). Rabbits were divided into four groups of six animals each. Group 1 received a normal diet/saline; group 2, a normal diet/hLIF; group 3, a 1% cholesterol diet/saline; and group 4, a 1% cholesterol diet/hLIF. hLIF had no effect on the plasma lipids or artery wall of group 2 rabbits (normal diet). However, in group 4 rabbits, plasma cholesterol levels and the percent surface area of thoracic aorta covered by fatty streaks was decreased by approximate to 30% and 80%, respectively, throughout all stages of the 4-week treatment period. In vitro, hLIF failed to prevent lipoprotein uptake by either SMCs or macrophages (foam cell formation) when the cells were exposed to P-VLDL for 24 hours. In contrast, hLIF (100 ng/mL) added to cultured human hepatoma HepG2 cells induced a twofold or threefold increase in intracellular lipid accumulation in the medium containing 10% lipoprotein-deficient serum or 10% fetal calf serum, respectively. This was accompanied by a significant non-dose-dependent increase in LDL receptor expression in hLIF-treated HepG2 cells incubated with LDL (20 mu g/mL) when compared with controls (P
Resumo:
We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.
Resumo:
Objective: To determine whether there is an association between endometrial expression of leukemia inhibitory factor (LIF) in the luteal phase of the menstrual cycle preceding in vitro fertilization (IVF) and treatment outcome. Methods: Biopsy specimens from the endometria of 52 women in the luteal. phase were immunostained against LIF Embryo culture and transfer were done according to standard procedures. Results: Clinical pregnancy occurred in 39% of the women following IVF, and strong endometrial immunohistochemical staining for LIF was associated with pregnancy (P=0.01). The women with a strong LIF expression had a 6.4-fold higher chance of becoming pregnant than those with weaker intensities (P=0.005). Conclusion: Endometrial expression of LIF during the luteal phase can be used as a predictor of IVF success. (C) 2008 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Cannabidiol (CBD) is a major nonpsychotomimetic component of Cannabis sativa that has been shown to have an anxiolytic effect in human and animal models. Earlier studies suggest that these effects involve facilitation of serotonin, a neurotransmitter that has also been related to obsessive-compulsive disorder. On the basis of this evidence, this study investigated the effects of CBD in C57BL/6J mice submitted to the marble-burying test (MBT), an animal model proposed to reflect compulsive behaviour. CBD (15, 30 and 60 mg/kg) induced a significant decrease in the number of buried marbles compared with controls (34, 41 and 48%, respectively). A similar, although larger, decrease was also found after the serotonin selective reuptake inhibitor paroxetine (10 mg/kg, 77% decrease) and the benzodiazepine diazepam (2.5 mg/kg, 84% decrease). The effect of CBD (30 mg/kg) was still significant after 7 days of daily repeated administration, whereas the effect of diazepam disappeared. Pretreatment with WAY100635 (3 mg/kg), a 5HT1A receptor antagonist, prevented the effects of paroxetine but failed to alter those of CBD. These latter effects, however, were prevented by pretreatment with the CB1 receptor antagonist AM251 (1 mg/kg). These results indicated that CBD and paroxetine decrease the number of buried marbles in the MBT through distinct pharmacological mechanisms. They also suggest a potential role of drugs acting on the cannabinoid system in modulating compulsive behaviour. Behavioural Pharmacology 21: 353-358 (C) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Aim of the study: The latex of Calotropis procera has been used in the traditional medicinal system for the treatment of leprosy, ulcers, tumors, piles and diseases of liver, spleen, abdomen and toothache. it comprises of a non-dialyzable protein fraction (LP) that exhibits anti-inflammatory properties and a dialyzable fraction (DF) exhibiting pro-inflammatory properties. The present study was carried out to evaluate the effect of LP sub-fractions on neutrophil functions and nociception in rodent models and to elucidate the mediatory role of nitric oxide (NO). Material and methods: The LP was subjected to ion exchange chromatography and the effect of its three sub-fractions (LP(PI), LP(PII), and LP(PIII)) thus obtained was evaluated on leukocyte functions in the rat peritonitis model and on nociception in the mouse model. Results: LP sub-fractions exhibit distinct protein profile and produce a significant decrease in the carrageenan and DF induced neutrophil influx and exhibit anti-nociceptive property. The LP and its sub-fractions produced a marked reduction in the number of rolling and adherent leukocytes in the mesenteric microvasculature as revealed by intravital microscopy. The anti-inflammatory effect of LP(PI), the most potent anti-inflammatory fraction of LP, was accompanied by an increase in the serum levels of NO. Further, our study shows that NO is also involved in the inhibitory effect of LP(PI) on neutrophil influx. Conclusions: Our study shows that LP fraction of Calotropis procera comprises of three distinct sets of proteins exhibiting anti-inflammatory and anti-nociceptive properties of which LP(PI) was most potent in inhibiting neutrophil functions and its effects are mediated through NO production. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA(A)-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA(A)-mediated inhibition plays a pronounced role in NCM`s auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM`s neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA(A) receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA(A)-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.
Resumo:
Objective: This study aimed to analyze in vitro inhibitory effects of restorative materials containing the antibacterial monomer 12-methacryloyloxydodecylpyridinium bromide (MDPB) on the formation of artificial secondary root caries lesions. Methods: Class V cavities (2 mm x 2 mm) were prepared in 75 human root fragments. Specimens were randomly divided into five groups (n = 15 fragments per group) and restored as follows: (I) MDPB-free adhesive system + MDPB-free composite (negative control); (II) resin modified glass ionomer (RM-GIC; positive control); (III) MDPB-free adhesive system + MDPB-containing composite (2.83% MDPB); (IV) MDPB-containing adhesive system + MDPB-free composite; M MDPB-containing adhesive system + MDPB-containing composite. Artificial secondary root caries lesions were produced by a biological artificial caries challenge. The restored specimens were immersed into a culture medium containing Streptococcus mutans and sucrose for 15 days. Histological slices (80 +/- 20 mu m) of the specimens were used for measuring the mean depths of the artificial lesions produced in both margins of the restorations using polarized light microscopy. Results were expressed in percentage related to the mean depth of the negative control, considered 100%. Data were compared by ANOVA followed by the Tukey`s test (p <= 0.05). Results: The depths of lesions adjacent to cavities filled with RM-GIC (GII; 85.17 +/- 15.2%) were significantly (p < 0.01) shallower than those adjacent to restorations with MDPB-free composite (GI; 100.00 +/- 10.04%), despite the presence of MDPB in the adhesive system (GIV; 101.95 +/- 21.32%). The depths of lesions adjacent to cavities restored with MDPB-containing composite (GIII; 82.68 +/- 12.81% and GV; 85.65 +/- 15.42%), despite the adhesive system used, were similar to those of RM-GIC (GII). Mean lesions depths in these groups decreased from 13% (GV) to 17% (GIII) in relation to the negative control (GI). Conclusions: MDPB-containing composite inhibits the progression of artificial secondary root caries lesions regardless of adhesive systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) includes a unique glycine-alanine repeat domain that inhibits the endogenous presentation of cytotoxic T lymphocyte (CTL) epitopes through the class I pathway by blocking proteasome-dependent degradation of this antigen. This immune evasion mechanism has been implicated in the pathogenesis of EBV-associated diseases. Here, we show that cotranslational ubiquitination combined with N-end rule targeting enhances the intracellular degradation of EBNA1, thus resulting in a dramatic reduction in the half-life of the antigen. Using DNA expression vectors encoding different forms of ubiquitinated EBNA1 for in vivo studies revealed that this rapid degradation, remarkably, leads to induction of a very strong CTL response to an EBNA1-specific CTL epitope. Furthermore, this targeting also restored the endogenous processing of HLA class I-restricted CTL epitopes within EBNA1 for immune recognition by human EBV-specific CTLs. These observations provide, for the first time, evidence that the glycine-alanine repeat-mediated proteasomal block on EBNA1 can be reversed by specifically targeting this antigen for rapid degradation resulting in enhanced CD8+ T cell-mediated recognition in vitro and in vivo.