942 resultados para human regulatory T-cells
Resumo:
The pathways involved in the maintenance of human embryonic stem (hES) cells remain largely unknown, although some signaling pathways have been identified in mouse embryonic stem (mES) cells. Fibroblast feeder layers are used to maintain the undifferentiated growth of hES cells and an examination of the conditioned media (CM) of human neonatal fibroblasts (HNFs) could provide insights into the maintenance of hES cells. The neonatal foreskin fibroblast line (HNF02) used in this study was shown to have a normal 2n = 46, XY chromosomal complement and to support the undifferentiated growth of the Embryonic Stem Cell International Pte. Ltd.-hES3 cell line. The CM of HNF02 was examined using two-dimensional liquid chromatography-tandem mass spectrometry (2-D LCMS) and two-dimensional electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry (2-DE/MALDI). A total of 102 proteins were identified, 19 by 2-DE/MALDI, 53 by 2-D LCMS and 30 by both techniques. These proteins were classified into 15 functional groups. Proteins identified in the extracellular matrix and differentiation and growth factor functional categories were considered most likely to be involved in the maintenance of hES cell growth, differentiation and pluripotency as these groups contained proteins involved in a variety of events including cell adhesion, cell proliferation and inhibition of cell proliferation, Writ signaling and inhibition of bone morphogenetic proteins.
Resumo:
Objective: The identification of regulatory T cells (Treg cells) as CD4(+)CD25(high) cells may be upset by the increased frequency of activated effector T cells (Teff cells) in inflammatory diseases such as systemic lupus erythematosus (SLE). This study aimed to evaluate the frequency of T-cell subsets according to the expression of CD25 and CD127 in active (A-SLE) and inactive SLE (I-SLE). Methods: Peripheral blood mononuclear cells (PBMCs) from 26 A-SLE patients (SLE Disease Activity Index (SLEDAI) = 10.17 +/- 3.7), 31 I-SLE patients (SLEDAI = 0), and 26 healthy controls (HC) were analysed by multicolour flow. cytometry. Results: CD25(high) cell frequency was increased in A-SLE (5.2 +/- 5.7%) compared to I-SLE (3.4 +/- 3.4%) and HC (1.73 +/- 0.8%) (p < 0.01). However, the percentage of FoxP3(+) cells in the CD25(high) subset was decreased in A-SLE (24.6 +/- 16.4%) compared to I-SLE (33.7 +/- 16) and HC (45 +/- 25.1%) (p < 0.01). This was partly due to the increased frequency of Teff cells (CD25(high)CD127(+)FoxP3(empty set)) in A-SLE (10.7 +/- 7.3%) compared to I-SLE (8.5 +/- 6.5) and HC (6.1 +/- 1.8%) (p = 0.02). Hence the frequency of Treg cells (CD25(+/high)CD127(low/empty set)FoxP3(+)) was equivalent in A-SLE (1.4 +/- 0.8%), I-SLE (1.37 +/- 1.0%), and HC (1.13 +/- 0.59%) (p = 0.42). A-SLE presented an increased frequency of CD25(+)CD127(+)FoxP3(+) and CD25(empty set)FoxP3(+)CD127(low/empty set) T cells, which may represent intermediate phenotypes between Treg and Teff cells. Conclusions: The present study has provided data supporting normal Treg cell frequency in A-SLE and I-SLE as well as increased frequency of Teff cells in A-SLE. This scenario reflects a Treg/Teff ratio imbalance that may favour the inflammatory phenotype of the disease. In addition, the increased frequency of T cells with putative intermediate phenotypes may be compatible with a highly dynamic immune system in SLE.
Resumo:
Objective: To investigate the role of regulatory T cells in the modulation of long-term immune dysfunction during experimental sepsis. It is well established that sepsis predisposes to development of a pronounced immunosuppression. Nevertheless, the mechanisms underlying the immune dysfunction after sepsis are still not well understood. Design: Prospective experimental study. Setting: University research laboratory. Interventions: Wild-type mice underwent cecal ligation and puncture and were treated with antibiotic during 3 days after surgery. On days 1, 7, or 15 after cecal ligation and puncture, the frequency of regulatory T cells, proliferation of CD4(+) T cells and bacterial counts were evaluated. Fifteen days after cecal ligation and puncture, surviving mice underwent secondary pulmonary infection by intranasal inoculation of nonlethal dose of Legionella pneumophila. Some mice received agonistic glucocorticoid-induced tumor necrosis factor receptor antibody (DTA-1) before induction of secondary infection. Measurements and Main Results: Mice surviving cecal ligation and puncture showed a markedly increased frequency of regulatory T cells in thymus and spleen, which was associated with reduced proliferation of CD4(+) T cells. Fifteen days after cecal ligation and puncture, all sepsis-surviving mice succumbed to nonlethal injection of L. pneumophila. Treatment of mice with DTA-1 antibody reduced frequency of regulatory T cells, restored CD4(+) T cell proliferation, reduced the levels of bacteria in spleen, and markedly improved survival of L. pneumophila infection. Conclusion: These findings suggest that regulatory T cells play an important role in the progression and establishment of immune dysfunction observed in experimental sepsis. (Crit Care Med 2010; 38: 1718-1725)
Resumo:
Objective: To evaluate the effect of peritoneal fluid (PF) from women without and with minimal/mild endometriosis on progesterone (P) release by cultured human granulosa-lutein cells obtained from infertile patients without endometriosis submitted to ovarian hyperstimulation for in vitro fertilization (IVF). Study design: A pilot study was performed. Human granulosa-lutein cells, obtained from 11 infertile patients without endometriosis (tubal or male factors of infertility) submitted to ovarian hyperstimulation for IVF, were cultured without PF (basal production) and with increasing volumes of steroid-extracted PF samples from 11 patients with endometriosis and 11 patients without endometriosis. Progesterone (P) levels in the media after 72 h culture were measured by chemoluminescence assay. The non-parametric Mann-Whitney-test was used for statistical analysis. Results: PF from patients without endometriosis stimulated P release in a dose-dependent manner up to the dose of 100 mu l/ml (10% concentration) when compared with basal production (without adding PF). P release was similar in cultures stimulated with PF from patients with or without endometriosis at 1% (10 mu l/ml) and 5% (50 ml/ml) concentrations. At 10% concentration, there was a non-statistically significant reduction in progesterone release by granulosa cells stimulated with PF from patients with endometriosis. PF from patients with endometriosis significantly reduced P release at 30% concentration (300 mu l/ml). Conclusions: PF stimulates P release by human granulosa-lutein cells in a dose-dependent manner. However, higher concentrations of PF from patients with minimal/mild endometriosis reduce P release, suggesting it contains factors that may compromise ovarian steroidogenesis. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Oral squamous cell carcinoma (OSCC) is a cancerous lesion with high incidence worldwide. The immunoregulatory events leading to OSCC persistence remain to be elucidated. Our hypothesis is that regulatory T cells (Tregs) are important to obstruct antitumor immune responses in patients with OSCC. In the present study, we investigated the frequency, phenotype, and activity of Tregs from blood and lesions of patients with OSCC. Our data showed that > 80% of CD4(+)CD25(+) T cells isolated from PBMC and tumor sites express FoxP3. Also, these cells express surface Treg markers, such as GITR, CD45RO, CD69, LAP, CTLA-4, CCR4, and IL-10. Purified CD4(+)CD25(+) T cells exhibited stronger suppressive activity inhibiting allogeneic T-cell proliferation and IFN-gamma production when compared with CD4(+)CD25(+) T cells isolated from healthy individuals. Interestingly, approximately 25% of CD4(+)CD25(-) T cells of PBMC from patients also expressed FoxP3 and, although these cells weakly suppress allogeneic T cells proliferative response, they inhibited IFN-gamma and induced IL-10 and TGF-beta secretion in these co-cultures. Thus, our data show that Treg cells are present in OSCC lesions and PBMC, and these cells appear to suppress immune responses both systemically and in the tumor microenvironment.
Resumo:
Background: Periodontal wound healing and regeneration require that new matrix be synthesized, creating an environment into which cells can migrate. One agent which has been described as promoting periodontal regeneration is an enamel matrix protein derivative (EMD). Since no specific growth factors have been identified in EMD preparations, it is postulated that EMD acts as a matrix enhancement factor. This study was designed to investigate the effect of EMD in vitro on matrix synthesis by cultured periodontal fibroblasts. Methods: The matrix response of the cells was evaluated by determination of the total proteoglycan synthesis, glycosaminoglycan profile, and hyaluronan synthesis by the uptake of radiolabeled precursors. The response of the individual proteoglycans, versican, decorin, and biglycan were examined at the mRNA level by Northern blot analysis. Hyaluronan synthesis was probed by identifying the isotypes of hyaluronan synthase (HAS) expressed in periodontal fibroblasts as HAS-2 and HAS-3 and the effect of EMD on the levels of mRNA for each enzyme was monitored by reverse transcription polymerase chain reaction (RTPCR). Comparisons were made between gingival fibroblast (GF) cells and periodontal ligament (PDLF) cells. Results: EMD was found to significantly affect the synthesis of the mRNAs for the matrix proteoglycans versican, biglycan, and decorin, producing a response similar to, but potentially greater than, mitogenic cytokines. EMD also stimulated hyaluronan synthesis in both GF and PDLF cells. Although mRNA for HAS-2 was elevated in GF after exposure to EMD, the PDLF did not show a similar response. Therefore, the point at which the stimulation of hyaluronan becomes effective may not be at the level of stimulation of the mRNA for hyaluronan synthase, but, rather, at a later point in the pathway of regulation of hyaluronan synthesis. In all cases, GF cells appeared to be more responsive to EMD than PDLF cells in vitro. Conclusions: EMD has the potential to significantly modulate matrix synthesis in a manner consistent with early regenerative events.
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
Mast cells are important effector cells of the immune system. We describe a rapid and inexpensive microassay to determine histamine release from human gingival mast cells. The assay is based on the coupling of histamine with o-phthalaldehyde (OPT) at a highly alkaline pH to form a fluorescent product. Using this assay with a sample volume of 10 mul/well in a 384 black well microplate, the histamine detection limit was 0.031 mug/ml. The human mast cell line (HMC-1) and fresh mast cells isolated from human gingival tissue (n = 10) were stimulated with substance P, anti-IgE or calcium ionophore A23187, Calcium ionophore significantly increased histamine release from HMC-1 cells and gingival mast cells (p < 0.05). This microassay will facilitate the study of mast cell histamine release in diseased oral mucosa.
Resumo:
Urethral epithelial cells are invaded by Neisseria gonorrhoeae during gonococcal infection in men. To understand further the mechanisms of gonococcal entry into host cells, we used the primary human urethral epithelial cells (PHUECs) tissue culture system recently developed by our laboratory. These studies showed that human asialoglycoprotein receptor (ASGP-R) and the terminal lactosamine of lacto-N-neotetraose-expressing gonococcal lipooligosaccharide (LOS) play an important role in invasion of PHUECs. Microscopy studies showed that ASGP-R traffics to the cell surface after gonococcal challenge. Co-localization of ASGP-R with gonococci was observed. As ASGP-R-mediated endocytosis is clathrin dependent, clathrin localization in PHUECs was examined after infection. Infected PHUECs showed increased clathrin recruitment and co-localization of clathrin and gonococci. Preincubating PHUECs in 0.3 M sucrose or monodansylcadaverine (MDC), which both inhibit clathrin-coated pit formation, resulted in decreased invasion. N. gonorrhoeae strain 1291 produces a single LOS glycoform that terminates with Gal(beta1-4)Glc-Nac(beta1-3)Gal(beta1-4)Glc (lacto-N-neotetraose). Invasion assays showed that strain 1291 invades significantly more than four isogenic mutants expressing truncated LOS. Sialylation of strain 1291 LOS inhibited invasion significantly. Preincubation of PHUECs in asialofetuin (ASF), an ASGP-R ligand, significantly reduced invasion. A dose-response reduction in invasion was observed in PHUECs preincubated with increasing concentrations of NaOH-deacylated 1291 LOS. These studies indicated that an interaction between lacto-N-neotetraose-terminal LOS and ASGP-R allows gonococcal entry into PHUECs.
Resumo:
We show here that the neurotrophin nerve growth factor (NGF), which has been shown to be a mitogen for breast cancer cells, also stimulates cell survival through a distinct signaling pathway. Breast cancer cell lines (MCF-7, T47-D, BT-20, and MDA-MB-231) were found to express both types of NGF receptors: p140(trkA) and p75(NTR). The two other tyrosine kinase receptors for neurotrophins, TrkB and TrkC, were not expressed. The mitogenic effect of NGF on breast cancer cells required the tyrosine kinase activity of p140(trkA) as well as the mitogen-activated protein kinase (MAPK) cascade, but was independent of p75(NTR). I, contrast, the anti-apoptotic effect of NGF (studied using the ceramide analogue C2) required p75(NTR) as well as the activation of the transcription factor NF-kB, but neither p140(trkA) nor MAPK was necessary. Other neurotrophins (BDNF, NT-3, NT-4/5) also induced cell survival, although not proliferation, emphasizing the importance of p75(NTR) in NGF-mediated survival. Both the pharmacological NF-KB inhibitor SN50, and cell transfection with IkBm, resulted in a diminution of NGF anti-apoptotic effect. These data show that two distinct signaling pathways are required for NGF activity and confirm the roles played by p75(NTR) and NF-kappaB in the activation of the survival pathway in breast cancer cells.
Resumo:
The class of molecular chaperones known as 14-3-3 is involved in the control of cellular growth by virtue of its apparent regulation of various signaling pathways, including the Raf/mitogen-activated protein kinase pathway. In breast cancer cells, the sigma form of 14-3-3 has been shown to interact with cyclin-dependent kinases and to control the rate of entry into mitosis. To test for a direct role for 14-3-3 in breast epithelial cell neoplasia, me have quantitated 14-3-3 protein levels using a proteomic approach based on two-dimensional electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF). We show here that 14-3-3 sigma protein is strongly down-regulated in the prototypic breast cancer cell lines MCF-7 and MDA-MB-231 and in primary breast carcinomas as compared with normal breast epithelial cells. In contrast, levels of the alpha, beta, delta, or zeta isoforms of 14-3-3 mere the same in both normal and transformed cells. The data support the idea that 14-3-3 sigma is involved in the neoplastic transition of breast epithelial cells by virtue of its role as a tumor suppressor; as such, it may constitute a robust marker with clinical efficacy for this pathology.
Resumo:
Antigen-specific suppression of a previously primed immune response is a major challenge for immunotherapy of autoimmune disease. ReIB activation is required for myeloid DC differentiation. Here, we show that antigen-exposed DCs in which ReIB function is inhibited lack cell surface CD40, prevent priming of immunity, and suppress previously primed immune responses. DCs generated from CD40-deficient mice similarly confer suppression. Regulatory CD4(+) T cells induced by the DCs transfer antigen-specific Infectious tolerance to primed recipients in an interleukin10-dependent fashion. Thus CD40, regulated by ReIB activity, determines the consequences of antigen presentation by myeloid DCs. These observations have significance for autoimmune immunotherapy and suggest a mechanism by which peripheral tolerance might be constitutively maintained by RelB(-) CD40(-) DCs.
Resumo:
Background: CDC25 phosphatases control cell cycle progression by activating cyclin dependent kinases. The three CDC25 isoforms encoding genes are submitted to alternative splicing events which generate at least two variants for CDC25A and five for both CDC25B and CDC25C. An over-expression of CDC25 was reported in several types of cancer, including breast cancer, and is often associated with a poor prognosis. Nevertheless, most of the previous studies did not address the expression of CDC25 splice variants. Here, we evaluated CDC25 spliced transcripts expression in anti-cancerous drug-sensitive and resistant breast cancer cell lines in order to identify potential breast cancer biomarkers. Methods: CDC25 splice variants mRNA levels were evaluated by semi-quantitative RT-PCR and by an original real-time RT-PCR assay. Results: CDC25 spliced transcripts are differentially expres-sed in the breast cancer cell lines studied. An up-regulation of CDC25A2 variant and an increase of the CDC25C5/C1 ratio are associated to the multidrug-resistance in VCREMS and DOXOR breast cancer cells, compared to their sensitive counterpart cell line MCF-7. Additionally, CDC25B2 tran-script is exclusively over-expressed in VCREMS resistant cells and could therefore be involved in the development of certain type of drug resistance. Conclusions: CDC25 splice variants could represent interesting potential breast cancer prognostic biomarkers.
Resumo:
Background: Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. Methods: The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. Results: RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA re-expression was only attained GSTP1 and APC. Conclusions: RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.