892 resultados para homogeneous mutitype Markov chains
Resumo:
The general assumption under which the (X) over bar chart is designed is that the process mean has a constant in-control value. However, there are situations in which the process mean wanders. When it wanders according to a first-order autoregressive (AR (1)) model, a complex approach involving Markov chains and integral equation methods is used to evaluate the properties of the (X) over bar chart. In this paper, we propose the use of a pure Markov chain approach to study the performance of the (X) over bar chart. The performance of the chat (X) over bar with variable parameters and the (X) over bar with double sampling are compared. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work we studied the consistency for a class of kernel estimates of f f (.) in the Markov chains with general state space E C Rd case. This study is divided into two parts: In the first one f (.) is a stationary density of the chain, and in the second one f (x) v (dx) is the limit distribution of a geometrically ergodic chain
Resumo:
Os Algoritmos Genético (AG) e o Simulated Annealing (SA) são algoritmos construídos para encontrar máximo ou mínimo de uma função que representa alguma característica do processo que está sendo modelado. Esses algoritmos possuem mecanismos que os fazem escapar de ótimos locais, entretanto, a evolução desses algoritmos no tempo se dá de forma completamente diferente. O SA no seu processo de busca trabalha com apenas um ponto, gerando a partir deste sempre um nova solução que é testada e que pode ser aceita ou não, já o AG trabalha com um conjunto de pontos, chamado população, da qual gera outra população que sempre é aceita. Em comum com esses dois algoritmos temos que a forma como o próximo ponto ou a próxima população é gerada obedece propriedades estocásticas. Nesse trabalho mostramos que a teoria matemática que descreve a evolução destes algoritmos é a teoria das cadeias de Markov. O AG é descrito por uma cadeia de Markov homogênea enquanto que o SA é descrito por uma cadeia de Markov não-homogênea, por fim serão feitos alguns exemplos computacionais comparando o desempenho desses dois algoritmos
Resumo:
O artigo analisa a convergência municipal da produtividade vegetal (extração vegetal e silvicultura) na região da Amazônia Legal entre os anos de 1996 e 2006. Para analisar a convergência, optou-se pela metodologia da matriz de transição de Markov (Processo Estacionário de Primeira Ordem de Markov). Os resultados mostram a existência de 13 classes de convergência da produtividade vegetal. No longo prazo, a hipótese de convergência absoluta não se mantém, visto que 68,23% dos municípios encontram-se numa classe inferior à média municipal, 33,54% em uma classe intermediária acima da média e 13,41% em uma classe superior acima da média.
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Nowadays communication is switching from a centralized scenario, where communication media like newspapers, radio, TV programs produce information and people are just consumers, to a completely different decentralized scenario, where everyone is potentially an information producer through the use of social networks, blogs, forums that allow a real-time worldwide information exchange. These new instruments, as a result of their widespread diffusion, have started playing an important socio-economic role. They are the most used communication media and, as a consequence, they constitute the main source of information enterprises, political parties and other organizations can rely on. Analyzing data stored in servers all over the world is feasible by means of Text Mining techniques like Sentiment Analysis, which aims to extract opinions from huge amount of unstructured texts. This could lead to determine, for instance, the user satisfaction degree about products, services, politicians and so on. In this context, this dissertation presents new Document Sentiment Classification methods based on the mathematical theory of Markov Chains. All these approaches bank on a Markov Chain based model, which is language independent and whose killing features are simplicity and generality, which make it interesting with respect to previous sophisticated techniques. Every discussed technique has been tested in both Single-Domain and Cross-Domain Sentiment Classification areas, comparing performance with those of other two previous works. The performed analysis shows that some of the examined algorithms produce results comparable with the best methods in literature, with reference to both single-domain and cross-domain tasks, in $2$-classes (i.e. positive and negative) Document Sentiment Classification. However, there is still room for improvement, because this work also shows the way to walk in order to enhance performance, that is, a good novel feature selection process would be enough to outperform the state of the art. Furthermore, since some of the proposed approaches show promising results in $2$-classes Single-Domain Sentiment Classification, another future work will regard validating these results also in tasks with more than $2$ classes.
Resumo:
Civil infrastructure provides essential services for the development of both society and economy. It is very important to manage systems efficiently to ensure sound performance. However, there are challenges in information extraction from available data, which also necessitates the establishment of methodologies and frameworks to assist stakeholders in the decision making process. This research proposes methodologies to evaluate systems performance by maximizing the use of available information, in an effort to build and maintain sustainable systems. Under the guidance of problem formulation from a holistic view proposed by Mukherjee and Muga, this research specifically investigates problem solving methods that measure and analyze metrics to support decision making. Failures are inevitable in system management. A methodology is developed to describe arrival pattern of failures in order to assist engineers in failure rescues and budget prioritization especially when funding is limited. It reveals that blockage arrivals are not totally random. Smaller meaningful subsets show good random behavior. Additional overtime failure rate is analyzed by applying existing reliability models and non-parametric approaches. A scheme is further proposed to depict rates over the lifetime of a given facility system. Further analysis of sub-data sets is also performed with the discussion of context reduction. Infrastructure condition is another important indicator of systems performance. The challenges in predicting facility condition are the transition probability estimates and model sensitivity analysis. Methods are proposed to estimate transition probabilities by investigating long term behavior of the model and the relationship between transition rates and probabilities. To integrate heterogeneities, model sensitivity is performed for the application of non-homogeneous Markov chains model. Scenarios are investigated by assuming transition probabilities follow a Weibull regressed function and fall within an interval estimate. For each scenario, multiple cases are simulated using a Monte Carlo simulation. Results show that variations on the outputs are sensitive to the probability regression. While for the interval estimate, outputs have similar variations to the inputs. Life cycle cost analysis and life cycle assessment of a sewer system are performed comparing three different pipe types, which are reinforced concrete pipe (RCP) and non-reinforced concrete pipe (NRCP), and vitrified clay pipe (VCP). Life cycle cost analysis is performed for material extraction, construction and rehabilitation phases. In the rehabilitation phase, Markov chains model is applied in the support of rehabilitation strategy. In the life cycle assessment, the Economic Input-Output Life Cycle Assessment (EIO-LCA) tools are used in estimating environmental emissions for all three phases. Emissions are then compared quantitatively among alternatives to support decision making.
Resumo:
Markov chain Monte Carlo (MCMC) is a methodology that is gaining widespread use in the phylogenetics community and is central to phylogenetic software packages such as MrBayes. An important issue for users of MCMC methods is how to select appropriate values for adjustable parameters such as the length of the Markov chain or chains, the sampling density, the proposal mechanism, and, if Metropolis-coupled MCMC is being used, the number of heated chains and their temperatures. Although some parameter settings have been examined in detail in the literature, others are frequently chosen with more regard to computational time or personal experience with other data sets. Such choices may lead to inadequate sampling of tree space or an inefficient use of computational resources. We performed a detailed study of convergence and mixing for 70 randomly selected, putatively orthologous protein sets with different sizes and taxonomic compositions. Replicated runs from multiple random starting points permit a more rigorous assessment of convergence, and we developed two novel statistics, delta and epsilon, for this purpose. Although likelihood values invariably stabilized quickly, adequate sampling of the posterior distribution of tree topologies took considerably longer. Our results suggest that multimodality is common for data sets with 30 or more taxa and that this results in slow convergence and mixing. However, we also found that the pragmatic approach of combining data from several short, replicated runs into a metachain to estimate bipartition posterior probabilities provided good approximations, and that such estimates were no worse in approximating a reference posterior distribution than those obtained using a single long run of the same length as the metachain. Precision appears to be best when heated Markov chains have low temperatures, whereas chains with high temperatures appear to sample trees with high posterior probabilities only rarely. [Bayesian phylogenetic inference; heating parameter; Markov chain Monte Carlo; replicated chains.]
Resumo:
An emergency is a deviation from a planned course of events that endangers people, properties, or the environment. It can be described as an unexpected event that causes economic damage, destruction, and human suffering. When a disaster happens, Emergency Managers are expected to have a response plan to most likely disaster scenarios. Unlike earthquakes and terrorist attacks, a hurricane response plan can be activated ahead of time, since a hurricane is predicted at least five days before it makes landfall. This research looked into the logistics aspects of the problem, in an attempt to develop a hurricane relief distribution network model. We addressed the problem of how to efficiently and effectively deliver basic relief goods to victims of a hurricane disaster. Specifically, where to preposition State Staging Areas (SSA), which Points of Distributions (PODs) to activate, and the allocation of commodities to each POD. Previous research has addressed several of these issues, but not with the incorporation of the random behavior of the hurricane's intensity and path. This research presents a stochastic meta-model that deals with the location of SSAs and the allocation of commodities. The novelty of the model is that it treats the strength and path of the hurricane as stochastic processes, and models them as Discrete Markov Chains. The demand is also treated as stochastic parameter because it depends on the stochastic behavior of the hurricane. However, for the meta-model, the demand is an input that is determined using Hazards United States (HAZUS), a software developed by the Federal Emergency Management Agency (FEMA) that estimates losses due to hurricanes and floods. A solution heuristic has been developed based on simulated annealing. Since the meta-model is a multi-objective problem, the heuristic is a multi-objective simulated annealing (MOSA), in which the initial solution and the cooling rate were determined via a Design of Experiments. The experiment showed that the initial temperature (T0) is irrelevant, but temperature reduction (δ) must be very gradual. Assessment of the meta-model indicates that the Markov Chains performed as well or better than forecasts made by the National Hurricane Center (NHC). Tests of the MOSA showed that it provides solutions in an efficient manner. Thus, an illustrative example shows that the meta-model is practical.
Resumo:
In this work, we present our understanding about the article of Aksoy [1], which uses Markov chains to model the flow of intermittent rivers. Then, we executed an application of his model in order to generate data for intermittent streamflows, based on a data set of Brazilian streams. After that, we build a hidden Markov model as a proposed new approach to the problem of simulation of such flows. We used the Gamma distribution to simulate the increases and decreases in river flows, along with a two-state Markov chain. The motivation for us to use a hidden Markov model comes from the possibility of obtaining the same information that the Aksoy’s model provides, but using a single tool capable of treating the problem as a whole, and not through multiple independent processes
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
O estudo do crescimento econômico é de suma importância para que possamos averiguar a trajetória de uma economia ao longo do tempo, a proposta desse trabalho é analisar o crescimento econômico no estado do Rio Grande do Sul, através do instrumental das cadeias de Markov, a ideia principal do estudo está na hipótese de convergência de renda. Primeiramente será testado a hipótese de convergência de renda do estado por meio das microrregiões, para isso serão utilizados dados de produto per capita dos anos de 1990, 2000 e 2010. Também será testado a hipótese de convergência para os municípios do Conselho Regional de Desenvolvimento Sul, situado no Rio Grande do Sul, utilizando dados de renda per capita dos anos de 1991, 2000 e 2010. Os resultados obtidos para as microrregiões do Rio Grande do Sul mostram que as economias não estão convergindo em sua totalidade para uma classe de renda especifica, porém é percebido que no longo prazo haverá uma maior concentração das microrregiões nos extratos de renda próximos a média, o tempo esperado para que as economias cheguem ao seu estado estacionário é de seis períodos. Por meio dos resultados obtidos para a região do Corede Sul, temos que as economias convergirão em sua maioria para a classe de renda médio pobre, seguido pela classe dos médios ricos. Ambas as classes estão situadas próximas a média regional, sendo que as classes de renda pobre e rico situadas aos extremos serão extintas no longo prazo. O tempo esperado para que as economias cheguem ao estado estacionário é de onze períodos.
Resumo:
O estudo do crescimento econômico é de suma importância para que possamos averiguar a trajetória de uma economia ao longo do tempo, a proposta desse trabalho é analisar o crescimento econômico no estado do Rio Grande do Sul, através do instrumental das cadeias de Markov, a ideia principal do estudo está na hipótese de convergência de renda. Primeiramente será testado a hipótese de convergência de renda do estado por meio das microrregiões, para isso serão utilizados dados de produto per capita dos anos de 1990, 2000 e 2010. Também será testado a hipótese de convergência para os municípios do Conselho Regional de Desenvolvimento Sul, situado no Rio Grande do Sul, utilizando dados de renda per capita dos anos de 1991, 2000 e 2010. Os resultados obtidos para as microrregiões do Rio Grande do Sul mostram que as economias não estão convergindo em sua totalidade para uma classe de renda especifica, porém é percebido que no longo prazo haverá uma maior concentração das microrregiões nos extratos de renda próximos a média, o tempo esperado para que as economias cheguem ao seu estado estacionário é de seis períodos. Por meio dos resultados obtidos para a região do Corede Sul, temos que as economias convergirão em sua maioria para a classe de renda médio pobre, seguido pela classe dos médio ricos. Ambas as classes estão situadas próximas a média regional, sendo que as classes de renda pobre e rico situadas aos extremos serão extintas no longo prazo. O tempo esperado para que as economias cheguem ao estado estacionário é de onze períodos.