967 resultados para hemoglobin S
Resumo:
The short-term systemic and renal hemodynamic effects of two stroma-free hemoglobin (SFH) solutions, one unmodified and the other modified by cross-linking, were examined in anesthetized rats after hemorrhagic hypotension. Both forms of SFH increased mean arterial pressure (MAP) and glomerular filtration rate (GFR) to baseline (prehemorrhage) values. The increase in MAP induced by unmodified SFH was greater than the increase in MAP caused by an albumin solution isoncotic to the unmodified SFH solution. Similarly, the increase in MAP caused by the modified SFH was also substantially greater than that induced by an albumin solution of comparable oncotic pressure to the modified SFH solution. Both unmodified and modified SFH increased GFR. As with MAP, the increase in GFR induced by both SFH solutions was greater than that associated with the oncotically matched albumin solutions. In separate experiments, the effects of nitric oxide (NO) inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) on MAP after hemorrhagic hypotension and subsequent infusion of unmodified SFH or albumin were also examined. In the albumin-infused rats, L-NAME increased MAP. In marked contrast, NO inhibition with L-NAME had no further effect on MAP when infused after SFH. We conclude that both unmodified and modified SFH solutions acutely improve MAP and GFR by the combined effects of intravascular volume expansion resulting from the colloid effect of the protein and by inactivation of NO.
Resumo:
Biomarkers are conventionally defined as "biological molecules that represent health and disease states." They typically are measured in readily available body fluids (blood or urine), lie outside the causal pathway, are able to detect subclinical disease, and are used to monitor clinical and subclinical disease burden and response to treatments. Biomarkers can be "direct" endpoints of the disease itself, or "indirect" or surrogate endpoints. New technologies (such as metabolomics, proteomics, genomics) bring a wealth of opportunity to develop new biomarkers. Other new technologies enable the development of nonmolecular, functional, or biophysical tissue-based biomarkers. Diabetes mellitus is a complex disease affecting almost every tissue and organ system, with metabolic ramifications extending far beyond impaired glucose metabolism. Biomarkers may reflect the presence and severity of hyperglycemia (ie, diabetes itself) or the presence and severity of the vascular complications of diabetes. Illustrative examples are considered in this brief review. In blood, hemoglobin A1c (HbA1c) may be considered as a biomarker for the presence and severity of hyperglycemia, implying diabetes or prediabetes, or, over time, as a "biomarker for a risk factor," ie, hyperglycemia as a risk factor for diabetic retinopathy, nephropathy, and other vascular complications of diabetes. In tissues, glycation and oxidative stress resulting from hyperglycemia and dyslipidemia lead to widespread modification of biomolecules by advanced glycation end products (AGEs). Some of these altered species may serve as biomarkers, whereas others may lie in the causal pathway for vascular damage. New noninvasive technologies can detect tissue damage mediated by AGE formation: these include indirect measures such as pulse wave analysis (a marker of vascular dysfunction) and more direct markers such as skin autofluorescence (a marker of long-term accumulation of AGEs). In the future, we can be optimistic that new blood and tissue-based biomarkers will enable the detection, prevention, and treatment of diabetes and its complications long before overt disease develops.
Resumo:
Background: Studies investigating the association between glycated hemoglobin (HbA) level and mortality risk in diabetic patients receiving hemodialysis have shown conflicting results.
Study Design: We conducted a systematic review and meta-analysis using MEDLINE, EMBASE, Web of Science, and the Cochrane Library.
Setting & Population: Diabetic patients on maintenance hemodialysis therapy.
Selection Criteria for Studies: Observational studies or randomized controlled trials investigating the association between HbA values and mortality risk. Study authors were asked to provide anonymized individual patient data or reanalyze results according to a standard template.
Predictor: Single measurement or mean HbA values. Mean HbA values were calculated using all individual-patient HbA values during the follow-up period of contributing studies.
Outcome: HR for mortality risk.
Results: 10 studies (83,684 participants) were included: 9 observational studies and one secondary analysis of a randomized trial. After adjustment for confounders, patients with baseline HbA levels =8.5% (=69 mmol/mol) had increased mortality (7 studies; HR, 1.14; 95% CI, 1.09-1.19) compared with patients with HbA levels of 6.5%-7.4% (48-57 mmol/mol). Likewise, patients with a mean HbA value =8.5% also had a higher adjusted risk of mortality (6 studies; HR,1.29; 95% CI, 1.23-1.35). There was a small but nonsignificant increase in mortality associated with mean HbA levels =5.4% (=36 mmol/mol; 6 studies; HR, 1.09; 95% CI, 0.89-1.34). Sensitivity analyses in incident (=90 days of hemodialysis) and prevalent patients (>90 days of hemodialysis) showed a similar pattern. In incident patients, mean HbA levels =5.4% also were associated with increased mortality risk (4 studies; HR, 1.29; 95% CI, 1.23-1.35).
Limitations: Observational study data and inability to adjust for diabetes type in all studies.
Conclusions: Despite concerns about the utility of HbA measurement in hemodialysis patients, high levels (=8.5%) are associated with increased mortality risk. Very low HbA levels (=5.4%) also may be associated with increased mortality risk.
Resumo:
JORNADAS DE ELECTROQUÍMICA E INOVAÇÃO 2013
Resumo:
Background: T reatment o f chronic hepatitis C i s evolving, a nd direct acting antivirals ( DAAs) are now a dded to p egylated interferon-α ( Peg- INF-α) and ribavirin (RBV) for the treatment o f hepatitis C v irus ( HCV) genotype 1 infection. DAAs c ause d ifferent side effects and can even worsen RBV induced hemolytic anemia. T herefore, identifying host genetic d eterminants of R BV bioavailability and therapeutic e fficacy will remain crucial for individualized treatment. Recent d ata showed associations between R BV induced h emolytic anemia and genetic polymorphisms o f concentrative nucleoside transporters s uch as C NT3 (SLC28A3) and i nosine t riphosphatase (ITPA). T o analyze t he association of genetic variants of SLC28 transporters and ITPA with RBV induced hemolytic anemia and treatment o utcome. Methods: I n our study, 173 patients f rom t he S wiss Hepatitis C C ohort Study and 2 2 patients from Swiss Association for the Study of the Liver study 24 (61% HCV g enotype 1, 3 9% genotypes 2 o r 3) were analyzed for SLC28A2 single nucleotide p olymorphism (SNP) rs11854484, SLC28A3 rs56350726 and SLC28A3 rs10868138 as well as ITPA SNPs rs1127354 and rs7270101. RBV serum levels during treatment were measured in 49 patients. Results: SLC28A2 r s11854484 genotype TT was associated with significantly higher dosage- and body weight-adjusted RBV levels as compared to genotypes TC and CC (p=0.04 and p=0.02 at weeks 4 and 8, respectively). ITPA SNPs rs1127354 and rs7270101 were associated with h emolytic a nemia both in genotype as w ell as i n allelic a nalyses. SLC28A3 rs56350726 genotype TT (vs. AT/AA, RR=2.1; 95% CI 1.1-4.1) as well as the T allele (vs. A; RR=1.8, 95% CI 1.1-3.2) were associated with increased SVR rates. The combined analysis of overall ITPA activity and SLC28 v ariants together revealed n o significant a dditive effects on either treatment-related anemia or SVR. Conclusions: T he newly identified association between RBV serum levels a nd SLC28A2 rs11854484 genotype as well as the replicated association of ITPA and SLC28A3 g enetic p olymorphisms w ith RBV induced hemolytic anemia and treatment r esponse underpin the need for further studies on host genetic d eterminants of R BV bioavailability and therapeutic e fficacy f or individualized treatment of chronic hepatitis C.
Resumo:
Several inorganic substances (e.g., C£ , Mg , Ca , H ) are potent negative modulators of hemoglobin-oxygen affinity. To evaluate the possibility that potentially adaptive changes in the red cell ionic environment of hemoglobin may take place during acclimation of fishes to increased environmental temperature, hematological status (hemoglobin, hematocrit, red cell numbers, mean erythrocytic volume and hemoglobin content), plasma + + 2+ 2+ and packed red cell electrolyte levels (Na , K , Ca , Mg , C£ ) were evaluated in summer and winter populations of the stenothermal rainbow trout, Salmo gairdneri, following acclimation to 2°, 10°, 18°C, and in a spring population of eurythermal carp, Cyprinus carpio, held at 2°, 16° and 30°C. From these data cell ion concentrations and ion:hemoglobin ratios were estimated. In view of the role of red cell carbonic anhydrase in the reductions of blood C02 tensions and the recruitment of Na and C£~ lost by fishes, a preliminary investigation of thermoacclimatory changes in the activity of this system in rainbow trout erythrocytes was conducted. Few changes in hematological status were encountered following acclimation. There was, however, some evidence of weight-specific differential hematological response in carp. This lead to markedly greater increases in hemoglobin, hematocrit and red cell numbers in smaller rather than in larger specimens at higher temperatures; variations which were 2+ well correlated with changes in plasma Ca . Plasma composition in summer trout was not altered by acclimation. In winter trout plasma Na and K increased at higher temperatures. Carp were characterized by increases in plasma calcium, and reductions in sodium and magnesium under these conditions. Several significant seasonal differences in plasma ion levels were observed in the trout. (n) In trout, only erythrocytic K and K :Hb were altered by acclimation, rising at higher temperatures. In carp Na , Na :Hb, C£~ and C£~:Hb in- 2+ 2+ creased with temperature, while Mg and Mg :Hb declined. Changes in overall ionic composition in carp red cells were consistent with increases in H content. In both species significant reciprocal variations in C£~ 2+ - + and Mg were found. In mammalian systems increases in C£ and H reduce hemoglobin-oxygen affinity by interaction with hemoglobin. Reduction in 2+ 2+ Mg maximizes organophosphate modulator availability by decreasing ATP»Mg complex formation. Thus, the changes observed may be of adaptive value in reducing hemoglobin-oxygen affinity, and facilitating oxygen release to cells at higher temperatures. Trout appear to maintain a high chloridelow magnesium state over the entire thermal tolerance zone. Carp, however, achieved this state only at higher temperatures. In both species mean erythrocytic volume was decreased at higher temperatures and this may facilitate branchial oxygen loading. Since mean erythrocytic volume was inversely related to red cell ion content, it is hypothesized that reductions in cell volume are achieved by export of some unidentified solute or solutes. Variations in the carbonic anhydrase activity that could be attributed to the thermoacclimatory process were quite modest. On the other hand, assays performed at the temperature of acclimation showed a large temperature effect where under in vivo conditions of temperature fish acclimated to higher temperatures might be expected to have higher activities. Furthermore, since hematocrit increased with temperature in these fish, while carbonic anhydrase is present only in the erythrocyte, the whole blood levels of this enzyme are expected to increase and further augment the temperature effect. This, in turn, could aid in the reduction of C02 (111) tension and increase the production of H and HC0~~ used in the active uptake of Na and C£ at higher temperatures.
Resumo:
P>Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is up-regulated in some but not all Cpefat/fat mouse brain regions.
Resumo:
Epidemiological studies have indicated that Western diets are related to an increase in a series of malignancies. Among the compounds that are credited for this toxic effect are heme and lipid peroxides. We evaluated the effects of hemoglobin (Hb) and linoleic acid hydroperoxides (LAOOH) on a series of toxicological endpoints, such as cytotoxicity, redox status, lipid peroxidation, and DNA damage. We demonstrated that the preincubation of SW480 cells with Hb and its subsequent exposure to LAOOH (Hb + LAOOH) led to an increase in cell death, DCFH oxidation, malonaldehyde formation, and DNA fragmentation and that these effects were related to the peroxide group and the heme present in Hb. Furthermore, Hb and LAOOH alone exerted a toxic effect on the endpoints assayed only at concentrations higher than 100 mu M. We were also able to show that SW480 cells presented a higher level of the modified DNA bases 8-oxo-7,8-dihydro-2`-deoxyguanosine and 1,N(2)-etheno-2`-deoxyguanosine compared to the control. Furthermore, incubations with Hb led to an increase in intracellular iron levels, and this high level of iron correlated with DNA oxidation, as measured as EndoIII- and Fpg-sensitive sites. Thus, Hb from either red meat or bowel bleeding could act as an enhancer of fatty acid hydroperoxide genotoxicity, which contributes to the accumulation of DNA lesions in colon cancer cells. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The present work focuses on the interaction between the zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp). Electronic optical absorption, fluorescence emission and circular dichroism spectroscopy techniques, together with Gel-filtration chromatography, were used in order to evaluate the oligomeric dissociation as well as the autoxidation of HbGp as a function of the interaction with HPS. A peculiar behavior was observed for the HPS-HbGp interaction: a complex ferric species formation equilibrium was promoted, as a consequence of the autoxidation and oligomeric dissociation processes. At pH 7.0, HPS is more effective up to 1 mM while at pH 9.0 the surfactant effect is more intense above 1 mM. Furthermore, the interaction of HPS with HbGp was clearly less intense than the interaction of this hemoglobin with cationic (CTAC) and anionic (SDS) surfactants. Probably, this lower interaction with HPS is due to two factors: (i) the lower electrostatic attraction between the HPS surfactant and the protein surface ionic sites when compared to the electrostatic interaction between HbGp and cationic and anionic surfactants, and (ii) the low cmc of HPS, which probably reduces the interaction of the surfactant in the monomeric form with the protein. The present work emphasizes the importance of the electrostatic contribution in the interaction between ionic surfactants and HbGp. Furthermore, in the whole HPS concentration range used in this study, no folding and autoxidation decrease induced by this surfactant were observed. This is quite different from the literature data on the interaction between surfactants and tetrameric hemoglobins, that supports the occurrence of this behavior for the intracellular hemoglobins at low surfactant concentration range. Spectroscopic data are discussed and compared with the literature in order to improve the understanding of hemoglobin-surfactant interaction as well as the acid isoelectric point (pI) influence of the giant extracellular hemoglobins on their structure-activity relationship. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) has a molecular mass (M) of 3600 +/- 100 kDa and a standard sedimentation coefficient (s(20.w)(0)) of 58 S. estimated by analytical ultracentrifugation (AUC). In the present work, further AUC studies were developed for HbGp, at pH 10.0, which favors oligomeric dissociation into lower M species. The HbGp oligomer is formed by globin chains a, b, c and d plus the linker chains. The pure monomeric fraction, subunit d, and HbGp at pH 10.0, in the presence of beta-mercaptoethanol, were also studied. Our results indicate that for samples of pure subunit d, besides the monomeric species with s(20.w)(0) of 2.0 S, formation of dimer of subunit d is observed with s(20.w)(0) of around 2.9 S. For the whole HbGp at pH 10.0 contributions from monomers, trimers and linkers are observed. No contribution from 58 S species was observed for the sample of oxy-HbGp at pH 10.0, showing its complete dissociation. For cyanomet-HbGp form a contribution of 17% is observed for the un-dissociated oligomer, consistent with data from other techniques that show the cyanomet-form is more stable as compared to oxy-HbGp. Masses of HbGp subunits, especially trimer abc and monomeric chains a, b, c and d, were also estimated from sedimentation equilibrium data, and are in agreement with the results from MALDI-TOF-MS. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted by Subunits containing heme groups with molecular masses (M) in the range of 15 to 19 kDa, monomers of 16 kDa (d), and trimers of 51 to 52 kDa (abc) linked by nonheme structures named linkers of 24 to 32 kDa (L). HbGp is homologous to Lumbricus terrestris hemoglobin (HbLt). Several reports propose M of HbLt in the range of 3.6 to 4.4 MDa. Based on subunits M determined by mass spectrometry and assuming HbGp stoichiometry of 12(abcd)(3)L(3) (Vinogradov model) plus 144 heme groups, a Value of M for HbGp oligomer of 3560 kDa can be predicted. This Value is nearly 500 kDa higher than the unique HbGp M Value reported in the literature. In the current work, sedimentation velocity analytical ultracentrifugation (AUC) experiments were performed to obtain M for HbGp in oxy and cyano-met forms. s(20,w)(0), values of 58.1 +/- 0.2 S and 59.6 +/- 0.2 S, respectively, for the two oxidation forms were obtained. The ratio between sedimentation and diffusion coefficients supplied values for M of approximately 3600 100 and 3700 100 kDa for oxy and cyano-met HbGp forms, respectively. An independent determination of the partial specific volume, V(bar), for HbGp was performed based on density measurements, providing a value of 0.764 +/- 0.008, in excellent agreement with the estimates from SEDFIT software. Our results show total consistency between M obtained by AUC and recent partial characterization by mass spectrometry. Therefore, HbGp possesses M very close to that of HbLt, suggesting an oligomeric assembly in agreement with the Vinogradov model. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS), optical absorption spectroscopy (UV-VIS) and differential scanning calorimetry (DSC). At pH 7.0, cyanomet-HbGp is very stable, no oligomeric dissociation is observed, while denaturation occurs at 56 degrees C, 4 degrees C higher as compared to oxy-HbGp. The oligomeric dissociation of HbGp occurs simultaneously with some protein aggregation. Kinetic studies for oxy-HbGp using UV-VIS and DES allowed to obtain activation energy (E(a)) values of 278-262 kJ/mol (DES) and 333 kJ/mol (UV-VIS). Complimentary DSC studies indicate that the denaturation is irreversible, giving endotherms strongly dependent upon the heating scan rates, suggesting a kinetically controlled process. Dependence on protein concentration suggests that the two components in the endotherms are due to oligomeric dissociation effect upon denaturation. Activation energies are in the range 200-560 kJ/mol. The mid-point transition temperatures were in the range 50-65 degrees C. Cyanomet-HbGp shows higher mid-point temperatures as well as activation energies, consistent with its higher stability. DSC data are reported for the first time for an extracellular hemoglobin. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 M Da, It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole range. Our zeta-potential data are consistent with light scattering results. Average values apt obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5,0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)