935 resultados para habitat structure
Resumo:
In this paper the habitat structure and ecology of Presbytis francoisi and Presbytis leucocephalus are compared. Observations were made of the two langur species in areas of southwest Guangxi province in which the langurs occur but are not sympatric. The results showed that the habitat of P. leucocephalus differs from that of P. francoisi and that the habitat in western areas was different from that in eastern areas in terms of vegetation and other criteria. P. francoisi was limited in its distribution to localities at higher altitudes, in contrast to P. leucocephalus. This may be due to human activities such as crop cultivation and logging. With respect to its activity pattern, P. leucocephalus spent 51.8% of its day in the trees and 48.2% on the rocky substrate. The results of this study suggest that Presbytis may best be regarded as a semiarboreal form.
Wybiórczość siedliskowa dzięcioła średniego Dendrocopos medius w zróżnicowanych ekosystemach leśnych
Resumo:
Wydział Biologii
Resumo:
Ireland and Britain were once covered in natural forest, but extensive anthropogenic deforestation reduced forest cover to less than 1% and 5 %, respectively, by the beginning of the 20th century. Large-scale afforestation has since increased the level of forest cover to 11% in Ireland and 12% in Britain, with the majority of planted forests comprising small monoculture plantations, many of which are of non - native conifer tree species. At present the forest cover of Ireland and Britain generally consists of small areas of remnant semi-natural woodland and pockets of these plantation forests within a predominantly agricultural landscape. Invertebrates comprise a large proportion of the biodiversity found within forested habitats. In particular, spiders and carabid beetles play an important role in food webs as both predators and prey and respond to small-scale changes in habitat structure, meaning they are particularly sensitive to forest management. Hoverflies play an important role in control and pollination and have been successfully used as indicators of habitat disturbance and quality. This research addressed a number of topics pertinent to the forest types present in the contemporary Irish and British landscapes and aimed to investigate the invertebrate diversity of these forests. Spiders and carabid beetles were sampled using pitfall trapping and hoverflies were sampled using Malaise net trapping. Topics included the impacts of afforestation, the importance of open space, the choice of tree species, and the use of indicators for biodiversity assessment, as well as rare native woodlands and the effect of grazing on invertebrate diversity. The results are discussed and evidence-based recommendations are made for forest policy and management to protect and enhance invertebrate biodiversity in order to promote sustainable forest management in Ireland and Britain.
Resumo:
This project was commissioned to generate an improved understanding of the sensitivities of seagrass habitats to pressures associated with human activities in the marine environment - to provide an evidence base to facilitate and support management advice for Marine Protected Areas; development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. Seagrass bed habitats are identified as a Priority Marine Feature (PMF) under the Marine (Scotland) Act 2010, they are also included on the OSPAR list of threatened and declining species and habitats, and are a Habitat of Principle Importance (HPI) under the Natural Environment and Rural Communities (NERC) Act 2006, in England and Wales. The purpose of this project was to produce sensitivity assessments with supporting evidence for the HPI, OSPAR and PMF seagrass/Zostera bed habitat definitions, clearly documenting the evidence behind the assessments and any differences between assessments. Nineteen pressures, falling in five categories - biological, hydrological, physical damage, physical loss, and pollution and other chemical changes - were assessed in this report. Assessments were based on the three British seagrasses Zostera marina, Z. noltei and Ruppia maritima. Z. marina var. angustifolia was considered to be a subspecies of Z. marina but it was specified where studies had considered it as a species in its own rights. Where possible other components of the community were investigated but the basis of the assessment focused on seagrass species. To develop each sensitivity assessment, the resistance and resilience of the key elements were assessed against the pressure benchmark using the available evidence. The benchmarks were designed to provide a ‘standard’ level of pressure against which to assess sensitivity. Overall, seagrass beds were highly sensitive to a number of human activities: • penetration or disturbance of the substratum below the surface; • habitat structure changes – removal of substratum; • physical change to another sediment type; • physical loss of habitat; • siltation rate changes including and smothering; and • changes in suspended solids. High sensitivity was recorded for pressures which directly impacted the factors that limit seagrass growth and health such as light availability. Physical pressures that caused mechanical modification of the sediment, and hence damage to roots and leaves, also resulted in high sensitivity. Seagrass beds were assessed as ‘not sensitive’ to microbial pathogens or ‘removal of target species’. These assessments were based on the benchmarks used. Z. marina is known to be sensitive to Labyrinthula zosterae but this was not included in the benchmark used. Similarly, ‘removal of target species’ addresses only the biological effects of removal and not the physical effects of the process used. For example, seagrass beds are probably not sensitive to the removal of scallops found within the bed but are highly sensitive to the effects of dredging for scallops, as assessed under the pressure penetration or disturbance of the substratum below the surface‘. This is also an example of a synergistic effect Assessing the sensitivity of seagrass bed biotopes to pressures associated with marine activities between pressures. Where possible, synergistic effects were highlighted but synergistic and cumulative effects are outside the scope off this study. The report found that no distinct differences in sensitivity exist between the HPI, PMF and OSPAR definitions. Individual biotopes do however have different sensitivities to pressures. These differences were determined by the species affected, the position of the habitat on the shore and the sediment type. For instance evidence showed that beds growing in soft and muddy sand were more vulnerable to physical damage than beds on harder, more compact substratum. Temporal effects can also influence the sensitivity of seagrass beds. On a seasonal time frame, physical damage to roots and leaves occurring in the reproductive season (summer months) will have a greater impact than damage in winter. On a daily basis, the tidal regime could accentuate or attenuate the effects of pressures depending on high and low tide. A variety of factors must therefore be taken into account in order to assess the sensitivity of a particular seagrass habitat at any location. No clear difference in resilience was established across the three seagrass definitions assessed in this report. The resilience of seagrass beds and the ability to recover from human induced pressures is a combination of the environmental conditions of the site, growth rates of the seagrass, the frequency and the intensity of the disturbance. This highlights the importance of considering the species affected as well as the ecology of the seagrass bed, the environmental conditions and the types and nature of activities giving rise to the pressure and the effects of that pressure. For example, pressures that result in sediment modification (e.g. pitting or erosion), sediment change or removal, prolong recovery. Therefore, the resilience of each biotope and habitat definitions is discussed for each pressure. Using a clearly documented, evidence based approach to create sensitivity assessments allows the assessment and any subsequent decision making or management plans to be readily communicated, transparent and justifiable. The assessments can be replicated and updated where new evidence becomes available ensuring the longevity of the sensitivity assessment tool. The evidence review has reduced the uncertainty around assessments previously undertaken in the MB0102 project (Tillin et al 2010) by assigning a single sensitivity score to the pressures as opposed to a range. Finally, as seagrass habitats may also contribute to ecosystem function and the delivery of ecosystem services, understanding the sensitivity of these biotopes may also support assessment and management in regard to these. Whatever objective measures are applied to data to assess sensitivity, the final sensitivity assessment is indicative. The evidence, the benchmarks, the confidence in the assessments and the limitations of the process, require a sense-check by experienced marine ecologists before the outcome is used in management decisions.
Resumo:
The Joint Nature Conservation Committee (JNCC) commissioned this project to generate an improved understanding of the sensitivities of Sabellaria spinulosa reefs based on the OSPAR habitat definition. This work aimed to provide an evidence base to facilitate and support management advice for Marine Protected Areas, development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. The OSPAR list of threatened and declining species and habitats refers to subtidal S. spinulosa reefs on hard or mixed substratum. S. spinulosa may also occur as thin crusts or individual worms but these are not the focus of conservation. The purpose of this project was to produce sensitivity assessments with supporting evidence for S. spinulosa reefs, clearly documenting the evidence behind the assessments and the confidence in these assessments. Sixteen pressures, falling in five categories - biological, hydrological, physical damage, physical loss, and pollution and other chemical changes - were assessed in this report. To develop each sensitivity assessment, the resistance and resilience of the key elements of the habitat were assessed against the pressure benchmark using the available evidence. The benchmarks were designed to provide a ‘standard’ level of pressure against which to assess sensitivity. The highest sensitivity (‘medium’) was recorded for physical pressures which directly impact the reefs including: • habitat structure changes – removal of substratum; • abrasion and penetration and sub-surface disturbance; • physical loss of habitat and change to habitat; and • siltation rate changes including and smothering. The report found that no evidence for differences in the sensitivity of the three EUNIS S. spinulosa biotopes that comprise the OSPAR definition. However, this evidence review has identified significant information gaps regarding sensitivity, ecological interactions with other species and resilience. No clear difference in resilience was established across the OSPAR S. spinulosa biotopes that were assessed in this report. Using a clearly documented, evidence based approach to create sensitivity assessments allows the assessment and any subsequent decision making or management plans to be readily communicated, transparent and justifiable. The assessments can be replicated and updated where new evidence becomes available ensuring the longevity of the sensitivity assessment tool. Finally, as S. spinulosa habitats may also contribute to ecosystem function and the delivery of ecosystem services, understanding the sensitivity of these biotopes may also support assessment and management in regard to these. Whatever objective measures are applied to data to assess sensitivity, the final sensitivity assessment is indicative. The evidence, the benchmarks, the confidence in the assessments and the limitations of the process, require a sense-check by experienced marine ecologists before the outcome is used in management decisions.
Resumo:
The Joint Nature Conservation Committee (JNCC) commissioned this project to generate an improved understanding of the sensitivities of blue mussel (Mytilus edulis) beds, found in UK waters, to pressures associated with human activities in the marine environment. The work will provide an evidence base that will facilitate and support management advice for Marine Protected Areas, development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. Blue mussel beds are identified as a Habitat of Principle Importance (HPI) under the Natural Environment and Rural Communities (NERC) Act 2006, as a Priority Marine Feature (PMF) under the Marine (Scotland) Act 2010, and included on the OSPAR (Annex V) list of threatened and declining species and habitats. The purpose of this project was to produce sensitivity assessments for the blue mussel biotopes included within the HPI, PMF and OSPAR habitat definitions, and clearly document the supporting evidence behind the assessments and any differences between them. A total of 20 pressures falling in five categories - biological, hydrological, physical damage, physical loss, and pollution and other chemical changes - were assessed in this report. The review examined seven blue mussel bed biotopes found on littoral sediment and sublittoral rock and sediment. The assessments were based on the sensitivity of M. edulis rather than associated species, as M. edulis was considered the most important characteristic species in blue mussel beds. To develop each sensitivity assessment, the resistance and resilience of the key elements are assessed against the pressure benchmark using the available evidence gathered in this review. The benchmarks were designed to provide a ‘standard’ level of pressure against which to assess sensitivity. Blue mussel beds were highly sensitive to a few human activities: • introduction or spread of non-indigenous species (NIS); • habitat structure changes - removal of substratum (extraction); and • physical loss (to land or freshwater habitat). Physical loss of habitat and removal of substratum are particularly damaging pressures, while the sensitivity of blue mussel beds to non-indigenous species depended on the species assessed. Crepidula fornicata and Crassostrea gigas both had the potential to outcompete and replace mussel beds, so resulted in a high sensitivity assessment. Mytilus spp. populations are considered to have a strong ability to recover from environmental disturbance. A good annual recruitment may allow a bed to recovery rapidly, though this cannot always be expected due to the sporadic nature of M. edulis recruitment. Therefore, blue mussel beds were considered to have a 'Medium' resilience (recovery within 2-10 years). As a result, even where the removal or loss of proportion of a mussel bed was expected due to a pressure, a sensitivity of 'Medium' was reported. Hence, most of the sensitivities reported were 'Medium'. It was noted, however, that the recovery rates of blue mussel beds were reported to be anywhere between two years to several decades. In addition, M. edulis is considered very tolerant of a range of physical and chemical conditions. As a result, blue mussel beds were considered to be 'Not sensitive' to changes in temperature, salinity, de-oxygenation, nutrient and organic enrichment, and substratum type, at the benchmark level of pressure. The report found that no distinct differences in overall sensitivity exist between the HPI, PMF and OSPAR definitions. Individual biotopes do however have different sensitivities to pressures, and the OSPAR definition only includes blue mussel beds on sediment. These differences were determined by the position of the habitat on the shore and the sediment type. For example, the infralittoral rock biotope (A3.361) was unlikely to be exposed to pressures that affect sediments. However in the case of increased water flow, mixed sediment biotopes were considered more stable and ‘Not sensitive’ (at the benchmark level) while the remaining biotopes were likely to be affected.
Using a clearly documented, evidence-based approach to create sensitivity assessments allows the assessment basis and any subsequent decision making or management plans to be readily communicated, transparent and justifiable. The assessments can be replicated and updated where new evidence becomes available ensuring the longevity of the sensitivity assessment tool. For every pressure where sensitivity was previously assessed as a range of scores in MB0102, the assessments made by the evidence review have supported one of the MB0102 assessments. The evidence review has reduced the uncertainty around assessments previously undertaken in the MB0102 project (Tillin et al., 2010) by assigning a single sensitivity score to the pressures as opposed to a range. Finally, as blue mussel bed habitats also contribute to ecosystem function and the delivery of ecosystem services, understanding the sensitivity of these biotopes may also support assessment and management in regard to these. Whatever objective measures are applied to data to assess sensitivity, the final sensitivity assessment is indicative. The evidence, the benchmarks, the confidence in the assessments and the limitations of the process, require a sense-check by experienced marine ecologists before the outcome is used in management decisions.
Resumo:
The role of habitat structure in controlling the composition of assemblages has often been studied, but is rarely manipulated so that it is distinguishable from other factors. Differences in habitat structure as determined by differences in mussel size structure may affect the diversity of assemblages associated with mussel beds. Previous studies examining the effect of the size of individual mussels in a patch on the diversity of associated macro-faunal assemblages confounded the age of the patch with the size of the mussels. We manipulated the age of mussel patches and the size of the mussels within them to test experimentally whether the size of mussels influenced the structure of associated assemblages. At one of the two locations considered, the structure of macro-faunal assemblages in patches of larger mussels differed significantly from those in patches of the same age composed of smaller mussels. At this location, the size of mussels did not affect species richness but the abundance and proportion of organisms present differed depending on the size of the mussels. Here patches of larger mussels contained greater numbers of Nematodes and Oligochaetes and a lower abundance of taxa, such as faera forsmani and Lepidonotus clava. We also found that invertebrate assemblages in general differed between the two locations. The effect of the size structure of mussels, however, varied spatially demonstrating that the effect of habitat structure on the diversity of associated assemblages is context dependent.
Resumo:
Cities dominated by impervious artificial surfaces can experience myriad negative environmental impacts. Restoration of green infrastructure has been identified as a mechanism for increasing urban resilience, enabling cities to transition towards sustainable futures in the face of climate-driven change. Building rooftops represent a viable space for integrating new green infrastructure into high density urban areas. Urban rooftops also provide prime locations for photovoltaic (PV) systems. There is increasing recognition that these two technologies can be combined to deliver reciprocal benefits in terms of energy efficiency and biodiversity targets. Scarcity of scientific evaluation of the interaction between PVs and green roofs means that the potential benefits are currently poorly understood. This study documents evidence from a biodiversity monitoring study of a substantial biosolar roof installed in the Queen Elizabeth Olympic Park. Vegetation and invertebrate communities were sampled and habitat structure measured in relation to habitat niches on the roof, including PV panels. Ninety-two plant species were recorded on the roof and variation in vegetation structure associated with proximity to PV panels was identified. Almost 50% of target invertebrate species collected were designated of conservation importance. Arthropod distribution varied in relation to habitat niches on the roof. The overall aim of the MPC green roof design was to create a mosaic of habitats to enhance biodiversity, and the results of the study suggest that PV panels can contribute to niche diversity on a green roof. Further detailed study is required to fully characterise the effects of PV panel density on biodiversity.
Resumo:
Salvage logging is a common practice carried out in burned forests worldwide, and intended to mitigate the economic losses caused by wildfires. Logging implies an additional disturbance occurring shortly after fire, although its ecological effects can be somewhat mitigated by leaving wood debris on site. The composition of the bird community and its capacity to provide ecosystem services such as seed dispersal of fleshy-fruited plants have been shown to be affected by postfire logging. We assessed the effects of the habitat structure resulting from different postfire management practices on the bird community, in three burned pine forests in Catalonia (western Mediterranean). For this purpose, we focused on the group of species that is responsible for seed dispersal, a process which takes place primarily during the winter in the Mediterranean basin. In addition, we assessed microhabitat selection by seed disperser birds in such environments in relation to management practices. Our results showed a significant, positive relationship between the density of wood debris piles and the abundance of seed disperser birds. Furthermore, such piles were the preferred microhabitat of these species. This reveals an important effect of forest management on seed disperser birds, which is likely to affect the dynamics of bird-dependent seed dispersal. Thus, building wood debris piles can be a useful practice for the conservation of both the species and their ecosystem services, while also being compatible with timber harvesting
Resumo:
1. The UK Biodiversity Action Plan (UKBAP) identifies invertebrate species in danger of national extinction. For many of these species, targets for recovery specify the number of populations that should exist by a specific future date but offer no procedure to plan strategically to achieve the target for any species. 2. Here we describe techniques based upon geographic information systems (GIS) that produce conservation strategy maps (CSM) to assist with achieving recovery targets based on all available and relevant information. 3. The heath fritillary Mellicta athalia is a UKBAP species used here to illustrate the use of CSM. A phase 1 habitat survey was used to identify habitat polygons across the county of Kent, UK. These were systematically filtered using relevant habitat, botanical and autecological data to identify seven types of polygon, including those with extant colonies or in the vicinity of extant colonies, areas managed for conservation but without colonies, and polygons that had the appropriate habitat structure and may therefore be suitable for reintroduction. 4. Five clusters of polygons of interest were found across the study area. The CSM of two of them are illustrated here: the Blean Wood complex, which contains the existing colonies of heath fritillary in Kent, and the Orlestone Forest complex, which offers opportunities for reintroduction. 5. Synthesis and applications. Although the CSM concept is illustrated here for the UK, we suggest that CSM could be part of species conservation programmes throughout the world. CSM are dynamic and should be stored in electronic format, preferably on the world-wide web, so that they can be easily viewed and updated. CSM can be used to illustrate opportunities and to develop strategies with scientists and non-scientists, enabling the engagement of all communities in a conservation programme. CSM for different years can be presented to illustrate the progress of a plan or to provide continuous feedback on how a field scenario develops.
Resumo:
Although the effects of nutrient enhancement on aquatic systems are well documented, the consequences of nutritional supplements on soil food webs are poorly understood, and results of past research examining bottom-up effects are often conflicting. In addition, many studies have failed to separate the effects of nutrient enrichment and the physical effects of adding organic matter. In this field study, we hypothesised that the addition of nitrogen to soil would result in a trophic cascade, through detritivores (Collembola) to predators (spiders), increasing invertebrate numbers and diversity. Nitrogen and lime were added to plots in an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps and identified to species. Seventeen species of Collembola were identified from the nitrogen plus lime (N + L) and control plots. Species assemblage, diversity, richness, evenness and total number were not affected by nutrient additions. However, there was an increase in the number of Isotomidae juveniles and Parisotoma anglicana trapped in the N + L plots. Of the 44 spider species identified, over 80% were Linyphiidae. An effect on species assemblage from the addition of N + L to the plots was observed on two of the four sampling dates (July 2002 and June 2003). The linyphiid, Oedothorax retusus, was the only species significantly affected by the treatments and was more likely to be trapped in the control plots. The increased number of juvenile Collembola, and change in community composition of spiders, were consequences of the bottom-up effect caused by nutrient inputs. However, despite efforts to eliminate the indirect effects of nutrient inputs, a reduction in soil moisture in the N + L plots cannot be eliminated as a cause of the invertebrate population changes observed. Even so, this experiment was not confounded by the physical effects of habitat structure reported in most previous studies. It provides evidence of moderate bottom-up influences of epigeic soil invertebrate food webs and distinguishes between nutrient addition and plant physical structure effects. It also emphasises the importance Of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production.
Resumo:
1. The UK Biodiversity Action Plan (UKBAP) identifies invertebrate species in danger of national extinction. For many of these species, targets for recovery specify the number of populations that should exist by a specific future date but offer no procedure to plan strategically to achieve the target for any species. 2. Here we describe techniques based upon geographic information systems (GIS) that produce conservation strategy maps (CSM) to assist with achieving recovery targets based on all available and relevant information. 3. The heath fritillary Mellicta athalia is a UKBAP species used here to illustrate the use of CSM. A phase 1 habitat survey was used to identify habitat polygons across the county of Kent, UK. These were systematically filtered using relevant habitat, botanical and autecological data to identify seven types of polygon, including those with extant colonies or in the vicinity of extant colonies, areas managed for conservation but without colonies, and polygons that had the appropriate habitat structure and may therefore be suitable for reintroduction. 4. Five clusters of polygons of interest were found across the study area. The CSM of two of them are illustrated here: the Blean Wood complex, which contains the existing colonies of heath fritillary in Kent, and the Orlestone Forest complex, which offers opportunities for reintroduction. 5. Synthesis and applications. Although the CSM concept is illustrated here for the UK, we suggest that CSM could be part of species conservation programmes throughout the world. CSM are dynamic and should be stored in electronic format, preferably on the world-wide web, so that they can be easily viewed and updated. CSM can be used to illustrate opportunities and to develop strategies with scientists and non-scientists, enabling the engagement of all communities in a conservation programme. CSM for different years can be presented to illustrate the progress of a plan or to provide continuous feedback on how a field scenario develops.
Resumo:
Reproductive parameters of Mallard Anas platyrhynchos were investigated in relation to vegetative development, physical characteristics and invertebrate food abundance of a complex of flooded gravel quarries in southern Britain. Breeding pair density over the study area was particularly high with 2.2 pairs km(-1) of shoreline. Across all lakes breeding success was limited to an average of 0.9 ducklings fledged pair(-1), yet an associated study showed that very little of the mortality could be attributed to predation. The results of stepwise multiple regressions indicated that the availability of emerging insects was important in determining the breeding density and breeding success of Mallards rather than habitat structure. We suggest that the overall great availability of suitable nest-sites combined with the variable but unmeasured stocking densities of fish may explain the lack of the latter correlations.
Resumo:
Polyommatus bellargus is a priority species of butterfly in the UK as a result of its scarcity and the rate of population decline over the last few years. In the UK, the species is associated with chalk grassland on hot, south-facing slopes suitable for the growth of the food plant Hippocrepis comosa. Shooting game birds is a popular pastime in the UK. Over 40 million game birds, principally Phasianus colchicus and Alectoris rufa, are bred and released into the countryside each year for shooting interests. There is a concern that the release of such a large number of non-native birds has an adverse effect on native wildlife. A study was carried out over a period of 3 years out to examine whether there was any evidence that A. rufa released into chalk grassland habitat negatively affects populations of P. bellargus. A comparison was made between sites where large numbers of A. rufa were released versus sites where no, or few, birds were released. The study involved the construction of exclosures in these sites to allow an examination of the number of butterflies emerging from H. comosa when the birds were excluded versus when the birds had free range across the area. Where birds were present the on-site vegetation was shorter than where they were absent indicating that the birds were definitely influencing habitat structure. However, the evidence that A. rufa was negatively influencing the number of adult butterflies emerging was not strong, although there was a largely non-significant tendency for higher butterfly emergence when the birds were excluded or absent.
Resumo:
An organisms movement within and between habitats is an essential trait of life history, one that shapes population dynamics, communities and ecosystems in space and time. Since the ability to perceive and react to specific conditions varies greatly between organisms, different movement patterns are generated. These, in turn, will reflect the way species persist in the original habitat and surrounding patches. This study evaluated patterns of movement of frugivorous butterflies in order to estimate the connectivity of a landscape mosaic in an area of Atlantic Forest. For this purpose, we used the capture-mark-recapture method on butterflies trapped with fermented fruit bait in three distinct habitats. The first represents a typical Atlantic forest fragment, while the other two represent man-made matrix habitats. One contains a coconut plantation and the other a plantation of the exotic Acacia mangium species. Five traps were randomly placed in each landscape unit in areas of 40 x 40m. Using recapture data and relating it to distance between captures and habitat structure, I found that movement frequencies, both within and between landscape units were different for the analyzed species, suggesting that they do not interpret and react to the landscape in the same way. Thus this study was able to measure landscape functional connectivity. For most species, the exchange between forest and coconut plantations occurred with low frequency compared to exchanges between the forest and acacia plantations, which share more structural similarities. This seems to indicate that a matrix that is more similar to patches of native vegetation can shelter species, permit their movement and, consequently, contribute to the landscape connectivity