972 resultados para fuzzy sample entropy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Backgrounds Ea aims: The boundaries between the categories of body composition provided by vectorial analysis of bioimpedance are not well defined. In this paper, fuzzy sets theory was used for modeling such uncertainty. Methods: An Italian database with 179 cases 18-70 years was divided randomly into developing (n = 20) and testing samples (n = 159). From the 159 registries of the testing sample, 99 contributed with unequivocal diagnosis. Resistance/height and reactance/height were the input variables in the model. Output variables were the seven categories of body composition of vectorial analysis. For each case the linguistic model estimated the membership degree of each impedance category. To compare such results to the previously established diagnoses Kappa statistics was used. This demanded singling out one among the output set of seven categories of membership degrees. This procedure (defuzzification rule) established that the category with the highest membership degree should be the most likely category for the case. Results: The fuzzy model showed a good fit to the development sample. Excellent agreement was achieved between the defuzzified impedance diagnoses and the clinical diagnoses in the testing sample (Kappa = 0.85, p < 0.001). Conclusions: fuzzy linguistic model was found in good agreement with clinical diagnoses. If the whole model output is considered, information on to which extent each BIVA category is present does better advise clinical practice with an enlarged nosological framework and diverse therapeutic strategies. (C) 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an adaptation of the Cross-Entropy (CE) method to optimize fuzzy logic controllers. The CE is a recently developed optimization method based on a general Monte-Carlo approach to combinatorial and continuous multi-extremal optimization and importance sampling. This work shows the application of this optimization method to optimize the inputs gains, the location and size of the different membership functions' sets of each variable, as well as the weight of each rule from the rule's base of a fuzzy logic controller (FLC). The control system approach presented in this work was designed to command the orientation of an unmanned aerial vehicle (UAV) to modify its trajectory for avoiding collisions. An onboard looking forward camera was used to sense the environment of the UAV. The information extracted by the image processing algorithm is the only input of the fuzzy control approach to avoid the collision with a predefined object. Real tests with a quadrotor have been done to corroborate the improved behavior of the optimized controllers at different stages of the optimization process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The texture segmentation techniques are diversified by the existence of several approaches. In this paper, we propose fuzzy features for the segmentation of texture image. For this purpose, a membership function is constructed to represent the effect of the neighboring pixels on the current pixel in a window. Using these membership function values, we find a feature by weighted average method for the current pixel. This is repeated for all pixels in the window treating each time one pixel as the current pixel. Using these fuzzy based features, we derive three descriptors such as maximum, entropy, and energy for each window. To segment the texture image, the modified mountain clustering that is unsupervised and fuzzy c-means clustering have been used. The performance of the proposed features is compared with that of fractal features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an innovative approach for signature verification and forgery detection based on fuzzy modeling. The signature image is binarized and resized to a fixed size window and is then thinned. The thinned image is then partitioned into a fixed number of eight sub-images called boxes. This partition is done using the horizontal density approximation approach. Each sub-image is then further resized and again partitioned into twelve further sub-images using the uniform partitioning approach. The features of consideration are normalized vector angle (α) from each box. Each feature extracted from sample signatures gives rise to a fuzzy set. Since the choice of a proper fuzzification function is crucial for verification, we have devised a new fuzzification function with structural parameters, which is able to adapt to the variations in fuzzy sets. This function is employed to develop a complete forgery detection and verification system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Descriptions of vegetation communities are often based on vague semantic terms describing species presence and dominance. For this reason, some researchers advocate the use of fuzzy sets in the statistical classification of plant species data into communities. In this study, spatially referenced vegetation abundance values collected from Greek phrygana were analysed by ordination (DECORANA), and classified on the resulting axes using fuzzy c-means to yield a point data-set representing local memberships in characteristic plant communities. The fuzzy clusters matched vegetation communities noted in the field, which tended to grade into one another, rather than occupying discrete patches. The fuzzy set representation of the community exploited the strengths of detrended correspondence analysis while retaining richer information than a TWINSPAN classification of the same data. Thus, in the absence of phytosociological benchmarks, meaningful and manageable habitat information could be derived from complex, multivariate species data. We also analysed the influence of the reliability of different surveyors' field observations by multiple sampling at a selected sample location. We show that the impact of surveyor error was more severe in the Boolean than the fuzzy classification. © 2007 Springer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the paper learning algorithm for adjusting weight coefficients of the Cascade Neo-Fuzzy Neural Network (CNFNN) in sequential mode is introduced. Concerned architecture has the similar structure with the Cascade-Correlation Learning Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of artificial neurons. CNFNN consists of neo-fuzzy neurons, which can be adjusted using high-speed linear learning procedures. Proposed CNFNN is characterized by high learning rate, low size of learning sample and its operations can be described by fuzzy linguistic “if-then” rules providing “transparency” of received results, as compared with conventional neural networks. Using of online learning algorithm allows to process input data sequentially in real time mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using fuzzy-set qualitative comparative analysis (fsQCA), this study investigates the conditions leading to a higher level of innovation. More specifically, the study explores the impact of inter-organisational knowledge transfer networks and organisations' internal capabilities on different types of innovation in Small to Medium size Enterprises (SMEs) in the high-tech sector. A survey instrument was used to collect data from a sample of UK SMEs. The findings show that although individual factors are important, there is no need for a company to perform well in all the areas. The fsQCA, which enables the examination of the impacts of different combinations of factors, reveals that there are a number of paths to achieve better incremental and radical innovation performance. Companies need to choose the one that is closest to their abilities and fits best with their resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente trabalho faz um enlace de teorias propostas por dois trabalhos: Transformação de valores crisp em valores fuzzy e construção de gráfico de controle fuzzy. O resultado desse enlace é um gráfico de controle fuzzy que foi aplicado em um processo de produção de iogurte, onde as variáveis analisadas foram: Cor, Aroma, Consistência, Sabor e Acidez. São características que dependem da percepção dos indivíduos, então a forma utilizada para coletar informações a respeito de tais característica foi a análise sensorial. Nas analises um grupo denominado de juízes, atribuía individualmente notas para cada amostra de iogurte em uma escala de 0 a 10. Esses valores crisp, notas atribuídas pelos juízes, foram então, transformados em valores fuzzy, na forma de número fuzzy triangular. Com os números fuzzy, foram construídos os gráficos de controle fuzzy de média e amplitude. Com os valores crisp foram construídos gráficos de controle de Shewhart para média e amplitude, já consolidados pela literatura. Por fim, os resultados encontrados nos gráficos tradicionais foram comparados aos encontrados nos gráficos de controle fuzzy. O que pode-se observar é que o gráfico de controle fuzzy, parece satisfazer de forma significativa a realidade do processo, pois na construção do número fuzzy é considerada a variabilidade do processo. Além disso, caracteriza o processo de produção em alguns níveis, onde nem sempre o processo estará totalmente em controle ou totalmente fora de controle. O que vai ao encontro da teoria fuzzy: se não é possível prever com exatidão determinados resultados é melhor ter uma margem de aceitação, o que implicará na redução de erros.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

fuzzySim is an R package for calculating fuzzy similarity in species occurrence patterns. It includes functions for data preparation, such as converting species lists (long format) to presence-absence tables (wide format), obtaining unique abbreviations of species names, or transposing (parts of) complex data frames; and sample data sets for providing practical examples. It can convert binary presence-absence to fuzzy occurrence data, using e.g. trend surface analysis, inverse distance interpolation or prevalence-independent environmental favourability modelling, for multiple species simultaneously. It then calculates fuzzy similarity among (fuzzy) species distributions and/or among (fuzzy) regional species compositions. Currently available similarity indices are Jaccard, Sørensen, Simpson, and Baroni-Urbani & Buser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this study is to present an alternative benchmarking approach that can be used by national regulators of utilities. It is widely known that the lack of sizeable data sets limits the choice of the benchmarking method and the specification of the model to set price controls within incentive-based regulation. Ill-posed frontier models are the problem that some national regulators have been facing. Maximum entropy estimators are useful in the estimation of such ill-posed models, in particular in models exhibiting small sample sizes, collinearity and non-normal errors, as well as in models where the number of parameters to be estimated exceeds the number of observations available. The empirical study involves a sample data used by the Portuguese regulator of the electricity sector to set the parameters for the electricity distribution companies in the regulatory period of 2012-2014. DEA and maximum entropy methods are applied and the efficiency results are compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.