929 resultados para fuzzy inference system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzification is introduced into gray-scale mathematical morphology by using two-input one-output fuzzy rule-based inference systems. The fuzzy inferring dilation or erosion is defined from the approximate reasoning of the two consequences of a dilation or an erosion and an extended rank-order operation. The fuzzy inference systems with numbers of rules and fuzzy membership functions are further reduced to a simple fuzzy system formulated by only an exponential two-input one-output function. Such a one-function fuzzy inference system is able to approach complex fuzzy inference systems by using two specified parameters within it-a proportion to characterize the fuzzy degree and an exponent to depict the nonlinearity in the inferring. The proposed fuzzy inferring morphological operators tend to keep the object details comparable to the structuring element and to smooth the conventional morphological operations. Based on digital area coding of a gray-scale image, incoherently optical correlation for neighboring connection, and optical thresholding for rank-order operations, a fuzzy inference system can be realized optically in parallel. (C) 1996 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação testa e compara dois tipos de modelagem para previsão de uma mesma série temporal. Foi observada uma série temporal de distribuição de energia elétrica e, como estudo de caso, optou-se pela região metropolitana do Estado da Bahia. Foram testadas as combinações de três variáveis exógenas em cada modelo: a quantidade de clientes ligados na rede de distribuição de energia elétrica, a temperatura ambiente e a precipitação de chuvas. O modelo linear de previsão de séries temporais utilizado foi um SARIMAX. A modelagem de inteligência computacional utilizada para a previsão da série temporal foi um sistema de Inferência Fuzzy. Na busca de um melhor desempenho, foram feitos testes de quais variáveis exógenas melhor influenciam no comportamento da energia distribuída em cada modelo. Segundo a avaliação dos testes, o sistema Fuzzy de previsão foi o que obteve o menor erro. Porém dentre os menores erros, os resultados dos testes também indicaram diferentes variáveis exógenas para cada modelo de previsão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work is to develop a web based decision support system, based onfuzzy logic, to assess the motor state of Parkinson patients on their performance in onscreenmotor tests in a test battery on a hand computer. A set of well defined rules, basedon an expert’s knowledge, were made to diagnose the current state of the patient. At theend of a period, an overall score is calculated which represents the overall state of thepatient during the period. Acceptability of the rules is based on the absolute differencebetween patient’s own assessment of his condition and the diagnosed state. Anyinconsistency can be tracked by highlighted as an alert in the system. Graphicalpresentation of data aims at enhanced analysis of patient’s state and performancemonitoring by the clinic staff. In general, the system is beneficial for the clinic staff,patients, project managers and researchers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of public-private partnership (PPP) infrastructure projects is largely contingent on whether the adopted risk allocation (RA) strategy is efficient. Theoretical frameworks drawing on the transaction cost economics and the resource-based view of organizational capability are able to explain the underlying mechanism but unable to accurately forecast efficient RA strategies. In this paper, a neurofuzzy decision support system (NFDSS) was developed to assist in the RA decision-making process in PPP projects. By combining fuzzy and neural network techniques, a synthesized fuzzy inference system was established and taken as the core component of the NFDSS. Evaluation results show that the NFDSS can forecast efficient RA strategies for PPP infrastructure projects at a highly accurate and effective level. A real PPP infrastructure project is used to demonstrate the NFDSS and its practical significance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cruise control in motor vehicles enhances safe and efficient driving by maintaining a constant speed at a preset level. Adaptive Cruise Control (ACC) is the latest development in cruise control. It controls engine throttle position and braking to maintain a safe distance behind a vehicle in front by responding to the speed of this vehicle, thus providing a safer and more relaxing driving environment. ACC can be further developed by including the look-ahead method of predicting environmental factors such as wind speed and road slope. The conventional analytical control methods for adaptive cruise control can generate good results; however they are difficult to design and computationally expensive. In order to achieve a robust, less computationally expensive, and at the same time more natural human-like speed control, intelligent control techniques can be used. This paper presents an Adaptive Neuro-Fuzzy Inference System (ANFIS) based on ACC systems that reduces the energy consumption of the vehicle and improves its efficiency. The Adaptive Cruise Control Look-Ahead (ACC-LA) system works as follows: It calculates the energy consumption of the vehicle under combined dynamic loads like wind drag, slope, kinetic energy and rolling friction using road data, and it includes a look-ahead strategy to predict the future road slope. The cruise control system adaptively controls the vehicle speed based on the preset speed and the predicted future slope information. By using the ANFIS method, the ACC-LA is made adaptive under different road conditions (slope angle and wind direction and speed). The vehicle was tested using the adaptive cruise control look-ahead energy management system, the results compared with the vehicle running the same test but without the adaptive cruise control look-ahead energy management system. The evaluation outcome indicates that the vehicle speed was efficiently controlled through the look-ahead methodology based upon the driving cycle, and that the average fuel consumption was reduced by 3%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Humans have a limited ability to accurately and continuously analyse large amount of data. In recent times, there has been a rapid growth in patient monitoring and medical data analysis using smart monitoring systems. Fuzzy logic-based expert systems, which can mimic human thought processes in complex circumstances, have indicated potential to improve clinicians' performance and accurately execute repetitive tasks to which humans are ill-suited. The main goal of this study is to develop a clinically useful diagnostic alarm system based on fuzzy logic for detecting critical events during anaesthesia administration. Method. The proposed diagnostic alarm system called fuzzy logic monitoring system (FLMS) is presented. New diagnostic rules and membership functions (MFs) are developed. In addition, fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS), and clustering techniques are explored for developing the FLMS' diagnostic modules. The performance of FLMS which is based on fuzzy logic expert diagnostic systems is validated through a series of offline tests. The training and testing data set are selected randomly from 30 sets of patients' data. Results. The accuracy of diagnoses generated by the FLMS was validated by comparing the diagnostic information with the one provided by an anaesthetist for each patient. Kappa-analysis was used for measuring the level of agreement between the anaesthetist's and FLMS's diagnoses. When detecting hypovolaemia, a substantial level of agreement was observed between FLMS and the human expert (the anaesthetist) during surgical procedures. Conclusion. The diagnostic alarm system FLMS demonstrated that evidence-based expert diagnostic systems can diagnose hypovolaemia, with a substantial degree of accuracy, in anaesthetized patients and could be useful in delivering decision support to anaesthetists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constructing a monotonicity relating function is important, as many engineering problems revolve around a monotonicity relationship between input(s) and output(s). In this paper, we investigate the use of fuzzy rule interpolation techniques for monotonicity relating fuzzy inference system (FIS). A mathematical derivation on the conditions of an FIS to be monotone is provided. From the derivation, two conditions are necessary. The derivation suggests that the mapped consequence fuzzy set of an FIS to be of a monotonicity order. We further evaluate the use of fuzzy rule interpolation techniques in predicting a consequent associated with an observation according to the monotonicity order. There are several findings in this article. We point out the importance of an ordering criterion in rule selection for a multi-input FIS before the interpolation process; and hence, the practice of choosing the nearest rules may not be true in this case. To fulfill the monotonicity order, we argue with an example that conventional fuzzy rule interpolation techniques that predict each consequence separately is not suitable in this case. We further suggest another class of interpolation techniques that predicts the consequence of a set of observations simultaneously, instead of separately. This can be accomplished with the use of a search algorithm, such as the brute force, genetic algorithm or etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the problem of maintaining the (global) monotonicity and local monotonicity properties between the input(s) and the output of an FIS model is addressed. This is known as the monotone fuzzy modeling problem. In our previous work, this problem has been tackled by developing some mathematical conditions for an FIS model to observe the monotonicity property. These mathematical conditions are used as a set of governing equations for undertaking FIS modeling problems, and have been extended to some advanced FIS modeling techniques. Here, we examine an alternative to the monotone fuzzy modeling problem by introducing a monotonicity index. The monotonicity index is employed as an approximate indicator to measure the fulfillment of an FIS model to the monotonicity property. It allows the FIS model to be constructed using an optimization method, or be tuned to achieve a better performance, without knowing the exact mathematical conditions of the FIS model to satisfy the monotonicity property. Besides, the monotonicity index can be extended to FIS modeling that involves the local monotonicity problem. We also analyze the relationship between the FIS model and its monotonicity property fulfillment, as well as derived mathematical conditions, using the Monte Carlo method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An assessment model is a mathematical model that produces a measuring index, either in the form of a numerical score or a category to a situation/object, with respect to the subject of measure. From the numerical score, decision can be made and action can be taken. To allow valid and useful comparisons among various situations/objects according to their associated numerical scores to be made, the monotone output property and the output resolution property are essential in fuzzy inference-based assessment problems. We investigate the conditions for a fuzzy assessment model to fulfill the monotone output property using a derivative approach. A guideline on how the input membership functions should be tuned is also provided. Besides, the output resolution property is defined as the derivative of the output of the assessment model with respect to its input. This derivative should be greater than the minimum resolution required. From the derivative, we suggest improvements to the output resolution property by refining the fuzzy production rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the applicability of the monotone output property and the output resolution property in fuzzy assessment models to two industrial Failure Mode and Effect Analysis (FMEA) problems. First, the effectiveness of the monotone output property in a single-input fuzzy assessment model is demonstrated with a proposed fuzzy occurrence model. Then, the usefulness of the two properties to a multi-input fuzzy assessment model, i.e., the Bowles fuzzy Risk Priority Number (RPN) model, is assessed. The experimental results indicate that both the fuzzy occurrence model and Bowles fuzzy RPN model are able to fulfill the monotone output property, with the derived conditions (in Part I) satisfied. In addition, the proposed rule refinement technique is able to improve the output resolution property of the Bowles fuzzy RPN model.