959 resultados para fault detection


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new concept of fault detection and isolation using robust observation for systems with random noises is presented. The method selects the parameters from components that may fault during the process and constructs well conditioned robust observers, considering sensors faults. To isolate component failures via robust observation, a bank of detection observers is constructed, where each observer is only sensitive to one specified component failure while robust to all other component failures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A methodology for pipeline leakage detection using a combination of clustering and classification tools for fault detection is presented here. A fuzzy system is used to classify the running mode and identify the operational and process transients. The relationship between these transients and the mass balance deviation are discussed. This strategy allows for better identification of the leakage because the thresholds are adjusted by the fuzzy system as a function of the running mode and the classified transient level. The fuzzy system is initially off-line trained with a modified data set including simulated leakages. The methodology is applied to a small-scale LPG pipeline monitoring case where portability, robustness and reliability are amongst the most important criteria for the detection system. The results are very encouraging with relatively low levels of false alarms, obtaining increased leakage detection with low computational costs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new concept of fault detection and isolation using robust observation for systems with random noises is presented. The method selects the parameters from components that may fault during the process and constructs well conditioned robust observers, considering sensors faults. To isolate component failures via robust observation, a bank of detection observers is constructed, where each observer is only sensitive to one specified component failure while robust to all other component failures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a control method that is effective to reduce the degenerative effects of delay time caused by a treacherous network. In present application a controlled DC motor is part of an inverted pendulum and provides the equilibrium of this system. The control of DC motor is accomplished at the distance through a treacherous network, which causes delay time in the control signal. A predictive technique is used so that it turns the system free of delay. A robust digital sliding mode controller is proposed to control the free-delay system. Due to the random conditions of the network operation, a delay time detection and accommodation strategy is also proposed. A computer simulation is shown to illustrate the design procedures and the effectiveness of the proposed method. © 2011 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays the method based on demodulation by envelope finds wide application in industry as a technique for evaluation of bearings and other components in rotating machinery. In recent years the application of Wavelets for fault diagnosis in machinery has also obtained good development. This article demonstrates the effectiveness of the combined application of Wavelets and envelope technique (also known as HFRT High-Frequency Resonance Technique) to remove background noise from signals collected from defect bearings and identification of the characteristic frequencies of defects. A comparison of the results obtained with the isolated application of only one method against the combined technique is performed showing the increased capacity in detection of faults in rolling bearings. © (2013) Trans Tech Publications, Switzerland.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Test case prioritization techniques schedule test cases for regression testing in an order that increases their ability to meet some performance goal. One performance goal, rate offault detection, measures how quickly faults are detected within the testing process. In previous work we provided a metric, APFD, for measuring rate of fault detection, and techniques for prioritizing test cases to improve APFD, and reported the results of experiments using those techniques. This metric and these techniques, however, applied only in cases in which test costs and fault severity are uniform. In this paper, we present a new metric for assessing the rate of fault detection of prioritized test cases, that incorporates varying test case and fault costs. We present the results of a case study illustrating the application of the metric. This study raises several practical questions that might arise in applying test case prioritization; we discuss how practitioners could go about answering these questions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the past few decades, integrated circuits have become a major part of everyday life. Every circuit that is created needs to be tested for faults so faulty circuits are not sent to end-users. The creation of these tests is time consuming, costly and difficult to perform on larger circuits. This research presents a novel method for fault detection and test pattern reduction in integrated circuitry under test. By leveraging the FPGA's reconfigurability and parallel processing capabilities, a speed up in fault detection can be achieved over previous computer simulation techniques. This work presents the following contributions to the field of Stuck-At-Fault detection: We present a new method for inserting faults into a circuit net list. Given any circuit netlist, our tool can insert multiplexers into a circuit at correct internal nodes to aid in fault emulation on reconfigurable hardware. We present a parallel method of fault emulation. The benefit of the FPGA is not only its ability to implement any circuit, but its ability to process data in parallel. This research utilizes this to create a more efficient emulation method that implements numerous copies of the same circuit in the FPGA. A new method to organize the most efficient faults. Most methods for determinin the minimum number of inputs to cover the most faults require sophisticated softwareprograms that use heuristics. By utilizing hardware, this research is able to process data faster and use a simpler method for an efficient way of minimizing inputs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A good and early fault detection and isolation system along with efficient alarm management and fine sensor validation systems are very important in today¿s complex process plants, specially in terms of safety enhancement and costs reduction. This paper presents a methodology for fault characterization. This is a self-learning approach developed in two phases. An initial, learning phase, where the simulation of process units, without and with different faults, will let the system (in an automated way) to detect the key variables that characterize the faults. This will be used in a second (on line) phase, where these key variables will be monitored in order to diagnose possible faults. Using this scheme the faults will be diagnosed and isolated in an early stage where the fault still has not turned into a failure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, a novel excitation-system ground-fault location method is described and tested in a 106 MVA synchronous machine. In this unit, numerous rotor ground-fault trips took place always about an hour after the synchronization to the network. However, when the field winding insulation was checked after the trips, there was no failure. The data indicated that the faults in the rotor were caused by centrifugal forces and temperature. Unexpectedly, by applying this new method, the failure was located in a cable between the excitation transformer and the automatic voltage regulator. In addition, several intentional ground faults were performed along the field winding with different fault resistance values, in order to test the accuracy of this method to locate defects in rotor windings of large generators. Therefore, this new on-line rotor ground-fault detection algorithm is tested in high-power synchronous generators with satisfactory results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To maintain the pace of development set by Moore's law, production processes in semiconductor manufacturing are becoming more and more complex. The development of efficient and interpretable anomaly detection systems is fundamental to keeping production costs low. As the dimension of process monitoring data can become extremely high anomaly detection systems are impacted by the curse of dimensionality, hence dimensionality reduction plays an important role. Classical dimensionality reduction approaches, such as Principal Component Analysis, generally involve transformations that seek to maximize the explained variance. In datasets with several clusters of correlated variables the contributions of isolated variables to explained variance may be insignificant, with the result that they may not be included in the reduced data representation. It is then not possible to detect an anomaly if it is only reflected in such isolated variables. In this paper we present a new dimensionality reduction technique that takes account of such isolated variables and demonstrate how it can be used to build an interpretable and robust anomaly detection system for Optical Emission Spectroscopy data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fault detection and isolation (FDI) are important steps in the monitoring and supervision of industrial processes. Biological wastewater treatment (WWT) plants are difficult to model, and hence to monitor, because of the complexity of the biological reactions and because plant influent and disturbances are highly variable and/or unmeasured. Multivariate statistical models have been developed for a wide variety of situations over the past few decades, proving successful in many applications. In this paper we develop a new monitoring algorithm based on Principal Components Analysis (PCA). It can be seen equivalently as making Multiscale PCA (MSPCA) adaptive, or as a multiscale decomposition of adaptive PCA. Adaptive Multiscale PCA (AdMSPCA) exploits the changing multivariate relationships between variables at different time-scales. Adaptation of scale PCA models over time permits them to follow the evolution of the process, inputs or disturbances. Performance of AdMSPCA and adaptive PCA on a real WWT data set is compared and contrasted. The most significant difference observed was the ability of AdMSPCA to adapt to a much wider range of changes. This was mainly due to the flexibility afforded by allowing each scale model to adapt whenever it did not signal an abnormal event at that scale. Relative detection speeds were examined only summarily, but seemed to depend on the characteristics of the faults/disturbances. The results of the algorithms were similar for sudden changes, but AdMSPCA appeared more sensitive to slower changes.