945 resultados para extreme high vacuum (XHV)
Resumo:
Shorter telomere length (TL) has found to be associated with lower birth weight and with lower cognitive ability and psychiatric disorders. However, the direction of causation of these associations and the extent to which they are genetically or environmentally mediated are unclear. Within-pair comparisons of monozygotic (MZ) and dizygotic (DZ) twins can throw light on these questions. We investigated correlations of within pair differences in telomere length, IQ, and anxiety/depression in an initial sample from Brisbane (242 MZ pairs, 245 DZ same sex (DZSS) pairs) and in replication samples from Amsterdam (514 MZ pairs, 233 DZSS pairs) and Melbourne (19 pairs selected for extreme high or low birth weight difference). Intra-pair differences of birth weight and telomere length were significantly correlated in MZ twins, but not in DZSS twins. Greater intra-pair differences of telomere length were observed in the 10% of MZ twins with the greatest difference in birth weight compared to the bottom 90% in both samples and also in the Melbourne sample. Intra-pair differences of telomere length and IQ, but not of TL and anxiety/depression, were correlated in MZ twins, and to a smaller extent in DZSS twins. Our findings suggest that the same prenatal effects that reduce birth weight also influence telomere length in MZ twins. The association between telomere length and IQ is partly driven by the same prenatal effects that decrease birth weight.
Resumo:
Thin films of Cd1−xMnxS (0<=x<=0.5) were deposited on glass substrates by thermal evaporation. All the films were deposited at 300 K and annealed at 373, 473, and 573 K for 1 h in a high vacuum in the range 10−4 Pa. The as-deposited and the annealed films were characterized for composition, structure, and microstructure by using energy-dispersive X-ray, X-ray diffraction, scanning electron microscopy, and atomic force microscopy (AFM). The electrical properties were studied by Hall effect measurement. Electrical conductivity was studied in the temperature range 190–450 K. AFM studies showed that all the films were in nanocrystalline form with grain size varying in the range between 36 and 82 nm. Grain size studies showed a definite increase with annealing temperature. All the films exhibited wurtzite structure of the host material. The lattice parameter varied linearly with composition, following Vegard's law in the entire composition range. Grain size, electrical conductivity, Hall mobility, carrier concentration, and activation energy varied, exhibiting either maxima or minima at x=0.3.
Resumo:
Nanotechnology applications are entering the market in increasing numbers, nanoparticles being among the main classes of materials used. Particles can be used, e.g., for catalysing chemical reactions, such as is done in car exhaust catalysts today. They can also modify the optical and electronic properties of materials or be used as building blocks for thin film coatings on a variety of surfaces. To develop materials for specific applications, an intricate control of the particle properties, structure, size and shape is required. All these depend on a multitude of factors from methods of synthesis and deposition to post-processing. This thesis addresses the control of nanoparticle structure by low-energy cluster beam deposition and post-synthesis ion irradiation. Cluster deposition in high vacuum offers a method for obtaining precisely controlled cluster-assembled materials with minimal contamination. Due to the clusters small size, however, the cluster-surface interaction may drastically change the cluster properties on deposition. In this thesis, the deposition process of metal and alloy clusters on metallic surfaces is modelled using molecular dynamics simulations, and the mechanisms influencing cluster structure are identified. Two mechanisms, mechanical melting upon deposition and thermally activated dislocation motion, are shown to determine whether a deposited cluster will align epitaxially with its support. The semiconductor industry has used ion irradiation as a tool to modify material properties for decades. Irradiation can be used for doping, patterning surfaces, and inducing chemical ordering in alloys, just to give a few examples. The irradiation response of nanoparticles has, however, remained an almost uncharted territory. Although irradiation effects in nanoparticles embedded inside solid matrices have been studied, almost no work has been done on supported particles. In this thesis, the response of supported nanoparticles is studied systematically for heavy and light ion irradiation. The processes leading to damage production are identified and models are developed for both types of irradiation. In recent experiments, helium irradiation has been shown to induce a phase transformation from multiply twinned to single-crystalline nanoparticles in bimetallic alloys, but the nature of the transition has remained unknown. The alloys for which the effect has been observed are CuAu and FePt. It is shown in this thesis that transient amorphization leads to the observed transition and that while CuAu and FePt do not amorphize upon irradiation in bulk or as thin films, they readily do so as nanoparticles. This is the first time such an effect is demonstrated with supported particles, not embedded in a matrix where mixing is always an issue. An understanding of the above physical processes is essential, if nanoparticles are to be used in applications in an optimal way. This thesis clarifies the mechanisms which control particle morphology, and paves way for the synthesis of nanostructured materials tailored for specific applications.
Resumo:
Germanium nanowires were grown on Au coated Si substrates at 380 degrees C in a high vacuum (5 x 10(-5) Torr) by e-beam evaporation of Germanium (Ge). The morphology observation by a field emission scanning electron microscope (FESEM) shows that the grown nanowires are randomly oriented with an average length and diameter of 600 nm and 120 nm respectively for a deposition time of 60 min. The nanowire growth ratewas measured to be similar to 10 nm/min. Transmission electron microscope (TEM) studies revealed that the Ge nanowires were single crystalline in nature and further energy dispersive X-ray analysis(EDAX) has shown that the tip of the grown nanowires was capped with Au nanoparticles, this shows that the growth of the Ge nanowires occurs by the vapour liquid solid (VLS) mechanism. HRTEM studies on the grown Ge nanowire show that they are single crystalline in nature and the growth direction was identified to be along [110]. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Si and Ge were cleaved on the (111) plane under ultra high vacuum and exposed to O and subsequent heat treatment. LEED and spot photometric measurements were taken. Cleaved surfaces for both Si and Ge gave the expected (2 x 1) structure. Results for O exposure were qualitatively for Si and Ge. The 1/2 orders disappeared after exposure to approx = 10 exp - exp 7. Integral orders started to weaken at 10 exp -6 to 10 exp - exp 2 torr min., disappearing at 10 exp -1 torr min. Heat treatment of Si at 900 deg C for several seconds restored the integral orders and further heating gave a new pattern with 1/3 orders. Exposure to 2 x 10 exp -6 torr min O without further heating weakened the fractional orders and at 10 exp -5 torr min they disappeared. Integral orders remained after further heating in O. For Ge integral orders were not restored after 0 exposure until heat treatment had continued at 550 deg C for several min. The (1 x 1) structure disappeared after heating at 590 deg C in 7 x 10 exp -1 torr O and further heating at 590 deg C without O restored the integral order Variations of intensity with voltage were measured for the (00) and (20) spots. The results supported a model proposed by Haneman (Phys. Rev., 1968, 170, 705) involving two kinds of atom sites on the cleaved surface. 20 ref.--E.J.S.
Resumo:
Silver selenide thin films of thickness between 80 nm and 160 nm were prepared by thermal evaporation technique at a high vacuum better than 2x10(-5)mbar on well cleaned glass substrates at a deposition rate of 0.2 nm/sec. Silver selenide thin films were polycrystalline with orthorhombic structure. Ellipsometric spectra of silver selenide thin films have been recorded in the wavelength range between 300 nm and 700 nm. Optical constants like refractive index, extinction coefficient, absorption coefficient, and optical band gap of silver selenide thin film have been calculated from the recorded spectra. The refractive index of silver selenide has been found to vary between 1.9 and 3.2 and the extinction coefficient varies from 0.5 to 1.6 with respect to their corresponding thickness of the films. Transmittance spectra of these films have been recorded in the wavelength range between 300 nm and 900 nm and its spectral data are analysed. The photoluminescence studies have been carried out on silver selenide thin films and the strong emission peak is found around 1.7 eV. The calculated optical band of thermally evaporated silver selenide thin films is found to be around 1.7 eV from their Ellipsometric, UV-Visible and Photoluminescence spectroscopic studies.
Resumo:
We describe here a photoelectron spectroscopy beamline installed on Indus-1 storage ring. Initially we give a brief description of optical and mechanical layout of beam-line. The beamline optics was designed to cover energy range from 10 eV to 200 eV and it consists of a pre-focusing mirror, a toroidal grating monochromator and a post-focusing mirror. We then discuss indigenously developed ultra high vacuum compatible work station to carry out angle integrated photoemission experiments. The beamline has been successfully commissioned and photoemission measurements on a variety of standard samples are presented.
Resumo:
Heavily Mn-doped II-VI-V-2 semiconductors, such as CdGeP2 and ZnGeP2 have been prepared by depositing Mn on single crystalline substrate at nearly 400 T in an ultra high vacuum chamber. Well-defined ferromagnetic hysteresis with a saturation behavior appears in the magnetization curve up to above room temperature. The chemical states of the ZDGeP(2):Mn interface has been clarified by a careful in situ photoemission spectroscopy. The as-prepared surface consists of Ge-rich, metallic Mn compound. In and below the sub-surface region, dilute divalent Mn species as precursors of the DMS phase exist. No MnP phase was observed at any stage of the depth profile. Theoretical band-calculation suggests that the system with vacancies (Cd, V-c, Mn)GeP2 or a non-stoichiometric (Cd, Ge, Mn)GeP2 are ferromagnetic and energetically stable although ferromagnetism is not stable in a stoichiometric compound (Cd, Mn)GeP2. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Bilayer thin films of Te/As(2)S(3) were prepared from Te and As(2)S(3) by thermal technique under high vacuum. Optical constants were calculated by analysing the transmission spectrum in the spectral range 400-1100 nm. The optical band gap decreases with the addition of Te to As(2)S(3). The decrease of optical band gap has been explained on the basis of density of states and the increase in disorder in the system. We have irradiated the as-deposited films using a diode pumped solid state laser of 532 nm wavelength to study photo-diffusion of Te into As(2)S(3). The changes were characterised by Fourier Transform Infrared and X-ray Photoelectron Spectroscopy (XPS). The optical band gap is found to be decreased with the light irradiation which is proposed due to homopolar bond formation. The core level peaks in XPS spectra give information about different bond formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Lead Telluride (PbTe) nanorods have been uniformly grown on silicon substrates, using the thermal evaporation technique under high vacuum conditions. The structural and morphological studies are done using X-ray diffraction and scanning electron microscopy. Optical nonlinearity studies using the open aperture z-scan employing 5 ns and 100 fs laser pulses reveal a three-photon type absorption. For nanosecond excitation the nonlinear absorption coefficients (gamma) are in the order of 10(-22) m(3) W-2 and for femtosecond excitation it is in the order of 10(-29) m(3) W-2. The role of free carriers and excitons in causing the nonlinearity in both excitation time domains is discussed. Results indicate that PbTe nanorods are good optical limiters with potential device applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Thin films were thermally evaporated from the bulk glasses of As40Se60-xSbx (with x = 0, 5, 10, 15 at.%) under high vacuum. We have characterized the deposited films by Fourier Transform Infrared spectroscopy. The relationship between the structural and optical properties and the compositional variation has been investigated. Increasing Sb content was found to affect the thermal and optical properties of these films. Non-direct electronic transition was found to be responsible for the photon absorption inside the investigated films. It was found that, the optical band gap E-o decreases while the width of localized states (Urbach energy) E-e increases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
There is a research knowledge gap for the dry wear data of nitride treated Stainless Steel in high temperature and high vacuum environment. In order to fill this gap, plasma nitriding was done on austenitic Stainless Steel type AISI 316LN (316LN SS) and dry sliding wear tests have been conducted at 25 degrees C, 200 degrees C and 400 degrees C in high vacuum of 1.6 x 10(-4) bar. The two different slider material (316LN SS and Colmonoy) and two different sliding speeds (0.0576 m/s and 0.167 m/s) have been used. The tribological parameters such as friction coefficient, wear mechanism and volume of metal loss have been evaluated. Scanning Electron Microscopy (SEM) was used to study the surface morphology of the worn pins and rings. Electronic balancing machine was used to record the mass of metal loss during wear tests. The 2D optical profilometer was used to measure the depth of the wear track. The Plasma Nitride treated 316LN SS rings (PN rings) exhibit excellent wear resistance against 316LN SS pin and Colmonoy pin at all temperatures. However, PN ring vs. Colmonoy pin Pair shows better wear resistance than PN ring vs. 316LN SS pin Pair at higher temperature. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Bilayer thin films of Bi/As2S3 were prepared from Bi and As2S3 by thermal evaporation technique under high vacuum. We have prepared three bilayer films of 905nm, 910nm and 915nm thickness with with As2S3 as bottom layer (900nm) and Bi as top layer (5,10,15 nm). We have compared the optical changes due to the thickness variation of Bi layer on As2S3 film. The changes were characterized by FTIR and XPS techniques.
Resumo:
We report the fabrication of nanoholes on silicon surface by exploiting the solubility of silicon in gallium by local droplet etching. Nanometer-sized gallium droplets yield nanoholes when annealed in ultra-high vacuum at moderate temperatures (similar to 500 degrees C) without affecting the other regions. High vacuum and moderate annealing temperatures are key parameters to obtain well-defined nanoholes with diameter comparable to that of Ga droplets. Self-assembly of Ga droplet leads to a nanohole density of 4-8 x 10(10)/cm(2).
Resumo:
Treatment of the chloro-substituted diboradiferrocene derivative 1 with Me3SiOMe and subsequent hydrolysis resulted in formation of the novel organometallic bis(borinic acid) derivative 3. The assembly of 3 into supramolecular structures via hydrogen bonding and reversible covalent boron-oxygen bond formation was explored. Upon crystallization from acetone or THF one-dimensional chains form in which molecules of 3 alternately serve as hydrogen bond donors and acceptors. The additional OH hydrogens that are not involved in hydrogen bonding within the polymeric chains undergo hydrogen bonding to the solvent molecules. Removal of the solvent was achieved at moderate temperature under high vacuum. While the polymeric chains remain intact, in the absence of the solvent as a hydrogen bond acceptor, short contacts to the Cp rings of neighboring polymer strands lead to a network-like structure. At higher temperatures, further dehydration occurs with formation of B-O-B linkages as confirmed by MALDI-TOF mass spectrometry. Oligomers with up to 15 repeating units (30 ferrocenes) were detected.