948 resultados para experimental visual perception


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During grasping and intelligent robotic manipulation tasks, the camera position relative to the scene changes dramatically because the robot is moving to adapt its path and correctly grasp objects. This is because the camera is mounted at the robot effector. For this reason, in this type of environment, a visual recognition system must be implemented to recognize and “automatically and autonomously” obtain the positions of objects in the scene. Furthermore, in industrial environments, all objects that are manipulated by robots are made of the same material and cannot be differentiated by features such as texture or color. In this work, first, a study and analysis of 3D recognition descriptors has been completed for application in these environments. Second, a visual recognition system designed from specific distributed client-server architecture has been proposed to be applied in the recognition process of industrial objects without these appearance features. Our system has been implemented to overcome problems of recognition when the objects can only be recognized by geometric shape and the simplicity of shapes could create ambiguity. Finally, some real tests are performed and illustrated to verify the satisfactory performance of the proposed system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: leaf 25.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We sought to determine the extent to which red–green, colour–opponent mechanisms in the human visual system play a role in the perception of drifting luminance–modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance–modulated (yellow–black) test sinusoids was measured following adaptation to isoluminant red–green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1–16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1–4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal–frequency–dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance–modulated motion targets drifting at speeds of up to at least 32°s-1. We argue that such mechanisms most probably lie within a parvocellular–dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Review of Basic vision: an introduction to visual perception by R Snowden, P Thompson, T Troscianko; Oxford University Press, Oxford, 408 pages, »27.99 paper (US$59.95) ISBN 9780199286706.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ambiguous representation of spatial depth in Thornton Walker’s painting The Homage creates a peculiar sense in which the ‘whereness’ of depicted objects and atmosphere cannot be ascertained by, either perspectival convention or perceptual strategies. This visual-spatial ambiguity resonates with my interested in ‘broken’ stereography. Hence, ‘duoscopy’ refers to the limitations of binocular vision when the object of perception is itself duplicitous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How does the brain make decisions? Speed and accuracy of perceptual decisions covary with certainty in the input, and correlate with the rate of evidence accumulation in parietal and frontal cortical "decision neurons." A biophysically realistic model of interactions within and between Retina/LGN and cortical areas V1, MT, MST, and LIP, gated by basal ganglia, simulates dynamic properties of decision-making in response to ambiguous visual motion stimuli used by Newsome, Shadlen, and colleagues in their neurophysiological experiments. The model clarifies how brain circuits that solve the aperture problem interact with a recurrent competitive network with self-normalizing choice properties to carry out probablistic decisions in real time. Some scientists claim that perception and decision-making can be described using Bayesian inference or related general statistical ideas, that estimate the optimal interpretation of the stimulus given priors and likelihoods. However, such concepts do not propose the neocortical mechanisms that enable perception, and make decisions. The present model explains behavioral and neurophysiological decision-making data without an appeal to Bayesian concepts and, unlike other existing models of these data, generates perceptual representations and choice dynamics in response to the experimental visual stimuli. Quantitative model simulations include the time course of LIP neuronal dynamics, as well as behavioral accuracy and reaction time properties, during both correct and error trials at different levels of input ambiguity in both fixed duration and reaction time tasks. Model MT/MST interactions compute the global direction of random dot motion stimuli, while model LIP computes the stochastic perceptual decision that leads to a saccadic eye movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les stimuli naturels projetés sur nos rétines nous fournissent de l’information visuelle riche. Cette information varie le long de propriétés de « bas niveau » telles que la luminance, le contraste, et les fréquences spatiales. Alors qu’une partie de cette information atteint notre conscience, une autre partie est traitée dans le cerveau sans que nous en soyons conscients. Les propriétés de l’information influençant l’activité cérébrale et le comportement de manière consciente versus non-consciente demeurent toutefois peu connues. Cette question a été examinée dans les deux derniers articles de la présente thèse, en exploitant les techniques psychophysiques développées dans les deux premiers articles. Le premier article présente la boîte à outils SHINE (spectrum, histogram, and intensity normalization and equalization), développée afin de permettre le contrôle des propriétés de bas niveau de l'image dans MATLAB. Le deuxième article décrit et valide la technique dite des bulles fréquentielles, qui a été utilisée tout au long des études de cette thèse pour révéler les fréquences spatiales utilisées dans diverses tâches de perception des visages. Cette technique offre les avantages d’une haute résolution au niveau des fréquences spatiales ainsi que d’un faible biais expérimental. Le troisième et le quatrième article portent sur le traitement des fréquences spatiales en fonction de la conscience. Dans le premier cas, la méthode des bulles fréquentielles a été utilisée avec l'amorçage par répétition masquée dans le but d’identifier les fréquences spatiales corrélées avec les réponses comportementales des observateurs lors de la perception du genre de visages présentés de façon consciente versus non-consciente. Les résultats montrent que les mêmes fréquences spatiales influencent de façon significative les temps de réponse dans les deux conditions de conscience, mais dans des sens opposés. Dans le dernier article, la méthode des bulles fréquentielles a été combinée à des enregistrements intracrâniens et au Continuous Flash Suppression (Tsuchiya & Koch, 2005), dans le but de cartographier les fréquences spatiales qui modulent l'activation de structures spécifiques du cerveau (l'insula et l'amygdale) lors de la perception consciente versus non-consciente des expressions faciales émotionnelles. Dans les deux régions, les résultats montrent que la perception non-consciente s'effectue plus rapidement et s’appuie davantage sur les basses fréquences spatiales que la perception consciente. La contribution de cette thèse est donc double. D’une part, des contributions méthodologiques à la recherche en perception visuelle sont apportées par l'introduction de la boîte à outils SHINE ainsi que de la technique des bulles fréquentielles. D’autre part, des indications sur les « corrélats de la conscience » sont fournies à l’aide de deux approches différentes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. METHODS: 36 visually normal participants (aged 19 – 80 years), completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields. and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus, and sensitivity for displacement in a random-dot kinematogram (Dmin). Participants also completed a hazard perception test (HPT) which measured participants’ response times to hazards embedded in video recordings of real world driving which has been shown to be linked to crash risk. RESULTS: Dmin for the random-dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random-dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. CONCLUSION: These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception in order to develop better interventions to improve road safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to promote integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicles equipped with a camera and a 2D laser range finder. A method to check for inconsistencies between the data provided by these two heterogeneous sensors is proposed and discussed. First, uncertainties in the estimated transformation between the laser and camera frames are evaluated and propagated up to the projection of the laser points onto the image. Then, for each pair of laser scan-camera image acquired, the information at corners of the laser scan is compared with the content of the image, resulting in a likelihood of correspondence. The result of this process is then used to validate segments of the laser scan that are found to be consistent with the image, while inconsistent segments are rejected. Experimental results illustrate how this technique can improve the reliability of perception in challenging environmental conditions, such as in the presence of airborne dust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of separate, yet complimentary, cortical pathways appears to play a role in visual perception and action when intercepting objects. The ventral system is responsible for object recognition and identification, while the dorsal system facilitates continuous regulation of action. This dual-system model implies that empirically manipulating different visual information sources during performance of an interceptive action might lead to the emergence of distinct gaze and movement pattern profiles. To test this idea, we recorded hand kinematics and eye movements of participants as they attempted to catch balls projected from a novel apparatus that synchronised or de-synchronised accompanying video images of a throwing action and ball trajectory. Results revealed that ball catching performance was less successful when patterns of hand movements and gaze behaviours were constrained by the absence of advanced perceptual information from the thrower's actions. Under these task constraints, participants began tracking the ball later, followed less of its trajectory, and adapted their actions by initiating movements later and moving the hand faster. There were no performance differences when the throwing action image and ball speed were synchronised or de-synchronised since hand movements were closely linked to information from ball trajectory. Results are interpreted relative to the two-visual system hypothesis, demonstrating that accurate interception requires integration of advanced visual information from kinematics of the throwing action and from ball flight trajectory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is important for practical application to design an effective and efficient metric for video quality. The most reliable way is by subjective evaluation. Thus, to design an objective metric by simulating human visual system (HVS) is quite reasonable and available. In this paper, the video quality assessment metric based on visual perception is proposed. Three-dimensional wavelet is utilized to decompose video and then extract features to mimic the multichannel structure of HVS. Spatio-temporal contrast sensitivity function (S-T CSF) is employed to weight coefficient obtained by three-dimensional wavelet to simulate nonlinearity feature of the human eyes. Perceptual threshold is exploited to obtain visual sensitive coefficients after S-T CSF filtered. Visual sensitive coefficients are normalized representation and then visual sensitive errors are calculated between reference and distorted video. Finally, temporal perceptual mechanism is applied to count values of video quality for reducing computational cost. Experimental results prove the proposed method outperforms the most existing methods and is comparable to LHS and PVQM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of visual input at encoding and retrieval on the phenomenology of memory. In Experiment 1, participants took part in events with and without wearing blindfolds, and later were shown a video of the events. Blindfolding, as well as later viewing of the video, both tended to decrease recollection. In Experiment 2, participants were played videos, with and without the visual component, of events involving other people. Events listened to without visual input were recalled with less recollection; later adding of the visual component increased recollection. In Experiment 3, participants were provided with progressively more information about events that they had experienced, either in the form of photographs that they had taken of the events or narrative descriptions of those photographs. In comparison with manipulations at encoding, the addition of more visual or narrative cues at recall had similar but smaller effects on recollection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful interaction with the world depends on accurate perception of the timing of external events. Neurons at early stages of the primate visual system represent time-varying stimuli with high precision. However, it is unknown whether this temporal fidelity is maintained in the prefrontal cortex, where changes in neuronal activity generally correlate with changes in perception. One reason to suspect that it is not maintained is that humans experience surprisingly large fluctuations in the perception of time. To investigate the neuronal correlates of time perception, we recorded from neurons in the prefrontal cortex and midbrain of monkeys performing a temporal-discrimination task. Visual time intervals were presented at a timescale relevant to natural behavior (<500 ms). At this brief timescale, neuronal adaptation--time-dependent changes in the size of successive responses--occurs. We found that visual activity fluctuated with timing judgments in the prefrontal cortex but not in comparable midbrain areas. Surprisingly, only response strength, not timing, predicted task performance. Intervals perceived as longer were associated with larger visual responses and shorter intervals with smaller responses, matching the dynamics of adaptation. These results suggest that the magnitude of prefrontal activity may be read out to provide temporal information that contributes to judging the passage of time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis addresses the problem of word learning in computational agents. The motivation behind this work lies in the need to support language-based communication between service robots and their human users, as well as grounded reasoning using symbols relevant for the assigned tasks. The research focuses on the problem of grounding human vocabulary in robotic agent’s sensori-motor perception. Words have to be grounded in bodily experiences, which emphasizes the role of appropriate embodiments. On the other hand, language is a cultural product created and acquired through social interactions. This emphasizes the role of society as a source of linguistic input. Taking these aspects into account, an experimental scenario is set up where a human instructor teaches a robotic agent the names of the objects present in a visually shared environment. The agent grounds the names of these objects in visual perception. Word learning is an open-ended problem. Therefore, the learning architecture of the agent will have to be able to acquire words and categories in an openended manner. In this work, four learning architectures were designed that can be used by robotic agents for long-term and open-ended word and category acquisition. The learning methods used in these architectures are designed for incrementally scaling-up to larger sets of words and categories. A novel experimental evaluation methodology, that takes into account the openended nature of word learning, is proposed and applied. This methodology is based on the realization that a robot’s vocabulary will be limited by its discriminatory capacity which, in turn, depends on its sensors and perceptual capabilities. An extensive set of systematic experiments, in multiple experimental settings, was carried out to thoroughly evaluate the described learning approaches. The results indicate that all approaches were able to incrementally acquire new words and categories. Although some of the approaches could not scale-up to larger vocabularies, one approach was shown to learn up to 293 categories, with potential for learning many more.