897 resultados para esterase specific activity
Resumo:
We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.
Resumo:
Non-pathogenic lactic acid bacteria are economically important Gram-positive bacteria used extensively in the food industry. Due to their “generally regarded as safe” status, certain species from the genera Lactobacillus and Lactococcus are also considered desirable as candidates for the production and secretion of recombinant proteins, particular those with therapeutic applications. The hypothesis examined by this thesis is that Lactococcus lactis can be modified to be an effective antimicrobial agent. Therefore, the aims of this thesis were to investigate the optimisation of the expression, secretion and/or activities of potential heterologous antimicrobial proteins by the model lactic acid bacterium, Lactococcus lactis subsp. cremoris MG1363. L. lactis strains were engineered to express and secrete the recombinant CyuC surface protein from Lactobacillus reuteri BR11, and a fusion protein consisting of CyuC and lysostaphin using the Sep promoter and secretion signal. CyuC has been characterised as a cystine-binding protein, but has also been demonstrated to have fibronectin binding activity. Lysostaphin is a bacteriolytic enzyme with specific activity against the Gram-positive pathogen, Staphylococcus aureus. These modified L. lactis strains were then investigated to see if they had the ability to inhibit the adhesion of S. aureus to host extracellular matrix (ECM) proteins. It was observed that the cell extracts of the L. lactis strain with the vector only (pGhost9:ISS1) was able to inhibit the adhesion of S. aureus to fibronectin, whilst the cell extracts of the L. lactis strain expressing lysostaphin was able to inhibit adhesion to keratin. Finally, this thesis has identified specific lactococcal genes that affect the secretion of lysostaphin through the use of random transposon mutagenesis. Ten mutants with higher lysostaphin activity contained insertions in four different genes encoding: (i) an uncharacterised putative transmembrane protein (llmg_0609), (ii) an enzyme catalysing the first step in peptidoglycan biosynthesis (murA2), (iii) a homolog of the oxidative defence regulator (trmA), and (iv) an uncharacterised putative enzyme involved in ubiquinone biosynthesis (llmg_2148). The higher lysostaphin activity observed in these mutants was found to be due to higher amounts of lysostaphin being secreted. The findings of this thesis contribute to the development of this organism as an antimicrobial agent and also to our understanding of L. lactis genetics.
Resumo:
Newell (1985, 1986) identified the importance of interacting constraints on the emergent behaviours of learners or performers in sport as they assemble functional states of movement organisation in achieving task goals. Constraints, related to the person, task and environment, were defined as ‘boundaries or features that limit motion of the entity under consideration at any moment in time’ (Newell, 1986, p.347). Personal (or organismic) constraints include factors such as individual anthropometrics (height, weight, and limb lengths), fitness (e.g., strength, speed, aerobic capacity, and flexibility), mental skills (e.g. concentration, confidence, emotional control and motivation), perceptual and decisionmaking skills (e.g., recognising patterns of play, anticipation by reading the movements of opponents) and personality factors (e.g., risk taking or conservative behaviours). Newell (1986, p.350) distinguished between general environmental constraints, such as gravity, ambient temperature, natural light and altitude and task constraints, which are task specific and concerned with the goals of a specific activity. More recently, socio-cultural constraints (e.g., family support, cultural expectations and access to facilities) have also been considered as environmental constraints. Application of the constraints framework to the study of sport performance has led to task constraints being defined to include factors such as rules of games, equipment used, boundary playing areas and markings, nets and goals, the number of...
Resumo:
The effects of oxygen availability and induction culture biomass upon production of an industrially important monoamine oxidase (MAO) were investigated in fed-batch cultures of a recombinant E. coli. For each induction cell biomass 2 different oxygenation methods were used, aeration and oxygen enriched air. Induction at higher biomass levels increased the culture demand for oxygen, leading to fermentative metabolism and accumulation of high levels of acetate in the aerated cultures. Paradoxically, despite an almost eight fold increase in acetate accumulation to levels widely reported to be highly detrimental to protein production, when induction wet cell weight (WCW) rose from 100% to 137.5%, MAO specific activity in these aerated processes showed a 3 fold increase. By contrast, for oxygenated cultures induced at WCW's 100% and 137.5% specific activity levels were broadly similar, but fell rapidly after the maxima were reached. Induction at high biomass levels (WCW 175%) led to very low levels of specific MAO activity relative to induction at lower WCW's in both aerated and oxygenated cultures. Oxygen enrichment of these cultures was a useful strategy for boosting specific growth rates, but did not have positive effects upon specific enzyme activity. Based upon our findings, consideration of the amino acid composition of MAO and previous studies on related enzymes, we propose that this effect is due to oxidative damage to the MAO enzyme itself during these highly aerobic processes. Thus, the optimal process for MAO production is aerated, not oxygenated, and induced at moderate cell density, and clearly represents a compromise between oxygen supply effects on specific growth rate/induction cell density, acetate accumulation, and high specific MAO activity. This work shows that the negative effects of oxygen previously reported in free enzyme preparations, are not limited to these acellular environments but are also discernible in the sheltered environment of the cytosol of E. coli cells.
Resumo:
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Resumo:
The specific activity and content of cytochrome oxidase in the rough endoplasmic reticulum--mitochondrion complex are higher than in the mitochondrial fraction. Radiolabelling studies with the use of hepatocytes and isolated microsomal and rough endoplasmic reticulum--mitochondrion fractions, followed by immunoprecipitation with anti-(cytochrome oxidase) antibody, reveal that the nuclear-coded cytoplasmic subunits of cytochrome oxidase are preferentially synthesized in the latter fraction. The results have a bearing on the mechanism of transport of these subunits into mitochondria.
Resumo:
Synephrinase, an enzyme catalyzing the conversion of (−)-synephrine into p-hydroxyphenylacetaldehyde and methylamine, was purified to apparent homogeneity from the cell-free extracts of Arthrobacter synephrinum grown on (±)-synephrine as the sole source of carbon and nitrogen. A 40-fold purification was sufficient to produce synephrinase that is apparently homogeneous as judged by native polyacrylamide gel electrophoresis and has a specific activity of 1.8 μmol product formed /min/mg protein. Thus, the enzyme is a relatively abundant enzyme, perhaps comprising as much as 2.5% of the total protein. The enzyme essentially required a sulfhydryl compound for its activity. Metal ions like Mg2+, Ca2+, and Mn2+ stimulated the enzyme activity. Metal chelating agents, thiol reagents, denaturing agents, and metal ions like Zn2+, Hg2+, Ag1+, and Cu2+ inhibited synephrinase activity. Apart from (−)-synephrine, the enzyme acted upon (±)-octopamine and β-methoxysynephrine. Molecular oxygen was not utilized during the course of the reaction. The molecular mass of the enzyme as determined by Sephadex G-200 chromatography, was around 156,000. The enzyme was made up of four identical subunits with a molecular mass of 42,000.
Resumo:
A transamidinase was purified 463-fold from Lathyrus sativus seedlings by affinity chromatography on homoarginine--Sepharose. The enzyme exhibited a wide substrate specificity, and catalysed the reversible transfer of the amidino groups from donors such as arginine, homoarginine and canavanine to acceptors such as lysine, putrescine, agmatine, cadaverine and hydroxylamine. The enzyme could not be detected in the seeds, and attained the highest specific activity in the embryo axis on day 10 after seed germination. Its thiol nature was established by strong inhibition by several thiol blockers and thiol compounds in the presence of ferricyanide. In the absence of an exogenous acceptor, it exhibited weak hydrolytic activity towards arginine. It had apparent mol.wt. 210000, and exhibited Michaelis--Menten kinetics with Km 3.0 mM for arginine. Ornithine competitively inhibited the enzyme, with Ki 1.0 mM in the arginine--hydroxylamine amidino-transfer reaction. Conversion experiments with labelled compounds suggest that the enzyme is involved in homoarginine catabolism during the development of plant embryo to give rise to important amino acids and amine metabolites. Presumptive evidence is also provided for its involvement in the biosynthesis of the guanidino amino acid during seed development. The natural occurrence of arcain in L. sativus and mediation of its synthesis in vitro from agmatine by the transamidinase are demonstrated.
Resumo:
An enzyme catalysing the synthesis of sym-homospermidine from putrescine and NAD+ with concomitant liberation of NH3 was purified 100-fold from Lathyrus sativus (grass pea) seedlings by affinity chromatography on Blue Sepharose. This thiol enzyme had an apparent mol.wt. of 75000 and exhibited Michelis-Menten kinetics with Km 3.0mM for putrescine. The same enzyme activity could also be demonstrated in the crude extracts of sandal (Santalum album) leaves, but with a specific activity 15-fold greater than that in L. sativus seedlings.
Resumo:
A cholesterol-esterifying enzyme which incorporates exogenous fatty acids into cholesterol esters in the presence of ATP and coenzyme A was demonstrated in 15-day-old rat brain. This enzyme was maximally active at pH 7.4 and distinct from the cholesterol-esterifying enzyme reported earlier (Eto and Suzuki, 1971), which has a pH optimum at 5.2 and does not require cofactors. Properties of the two enzymes have been compared. Both the enzymes showed negligible esterification with acetate and were maximally active with oleic acid. The pH 5.2 enzyme esterified desmosterol, lanosterol and cholesterol at about the same rate, while the pH 7.4 enzyme was only 50% as active ith lanosterol as it was with cholesterol and desmosterol. Phosphatidyl serine stimulated the pH 5.2 enzyme but not the pH 7.4 enzyme. Phosphatidyl choline and sodium taurocholate showed no effect on either of the enzymes. Both the enzymes were associated with particulate fractions, but the pH 7.4 enzyme was localized more in the microsomes. Purified myelin showed 2.6-fold and 1.5-fold higher specific activities of pH 5.2 and 7.4 enzymes respectively, when compared with homogenate. About 7-10% of total activity of both the enzymes was associated with purified myelin. Brain stem and spinal cord showed higher specific activity of pH 5.2 enzyme than cerebral cortex and cerebellum, while pH 7.4 enzyme specific activity was higher in cerebellum and brain stem than in cerebral cortex and spinal cord. Microsomal pH 7.4 activity showed progressive increase prior to the active period of myelination, reaching a maximum on the 15th day after birth and declined to 20% of the peak activity by 30 days. In contrast, pH 5.2 enzyme reached maximum activity about the 6th day after birth and remained at this level well into adulthood. In 15-day-old rat brain, pH 7.4 enzyme had five to six times higher specific activity than pH 5.2 enzyme, while in adults the activities were equal. The pH 7.4 enzyme showed a threefold higher specific activity than pH 5.2 enzyme in myelin from 15-day-old rats, but in adults the reverse was true. Key Words: Cholesterol esterifying enzymes-Developing rat brain-Myelination. Jagannatha H. M. and Sastry P. S. Cholesterol-esterifying enzymes in developing rat brain. J. Neurochem. 36, 1352- 1360 (1981).
Resumo:
The isolation and characterization of the products formed during the irreversible thermal denaturation of enzyme RNAase-A are described. RNAase-A, when maintained in aqueous solution at pH 7.0 and 70° for 2 h, gives soluble products which have been fractionated by gel filtration on Sephadex G-75 into four components. These components are designated RNAase-At1, RNAase-At2, RNAase-At3 and RNAase-At4 according to the order of their elution from Sephadex G-75. RNAase-At4 shows the same specific activity towards yeast RNA as native RNAase-A and is virtually indistinguishable from it by the physical methods employed. However, chromatography on CM-cellulose separates it into three components that show the same u.v. spectra and specific activity towards yeast RNA as native RNAase-A. RNAase-At1, RNAase-At2and RNAase-At3 are all structurally altered derivatives of RNAase-A and they exhibit low specific activity (5–10%) towards yeast RNA. In the presence of added S-protein, all these derivatives show greatly enhanced enzymic activity. RNAase-At1 and RNAase-At2 are polymers, covalently crosslinked by intermolecular disulfide bridges; whereas RNAase-At3 is a monomer. Physical studies such as 1H-n.m.r., sedimentation analysis, u.v. absorption spectra and CD spectra reveal that RNAase-At3 is a unfolded derivative of RNAase-A. However, it is seen to possess sufficient residual structure which gives rise to a low but easily detectable enzymic activity.
Resumo:
Vanadate-dependent oxidation of NADH by xanthine oxidase does not require the presence of xanthine and therefore is not due to cooxidation. Addition of NADH or xanthine had no effect on the oxidation of the other substrate. Oxidation of NADH was high at acid pH and oxidation of xanthine was high at alkaline pH. The specific activity was relatively very high with NADH. Concentration-dependent oxidation of NADH was obtained in the presence of the polymeric form of vanadate, but not orthovanadate or metavanadate. Both NADH and NADPH were oxidized, as in the nonenzymatic system. Oxidation of NADH, but not xanthine, was inhibited by KCN, ascorbate, MnCl2, cytochrome c, mannitol, Tris, epinephrine, norepinephrine, and triiodothyronine. Oxidation of NADH was accompanied by uptake of oxygen and generation of H2O2 with a stoichiometry of 1:1:1 for NADH:O2:H2O2. A 240-nm-absorbing species was formed during the reaction which was different from H2O2 or superoxide. A mechanism of NADH oxidation is suggested wherein VV and O2 receive one electron each successively from NADH followed by VIV giving the second electron to superoxide and reducing it to H2O2.
Resumo:
Aspartate transcarbamylase (EC 2.1.3.2) was purified to homogeniety from germinated mung bean seedlings by treatment with carbamyl phosphate. The purified enzyme was a hexamer with a subunit molecular weight of 20,600. The enzyme exhibited multiple activity bands on Polyacrylamide gel electrophoresis, which could be altered by treatment with carbamyl phosphate or UMP indicating that the enzyme was probably undergoing reversible association or dissociation in the presence of these effectors. The carbamyl phosphate stabilized enzyme did not exhibit positive homotropic interactions with carbamyl phosphate and hysteresis. The enzyme which had not been exposed to carbamyl phosphate showed a decrease in specific activity with a change in the concentration of both carbamyl phosphate and protein. The carbamyl phosphate saturation and U M P inhibition patterns were complex with a maximum and a plateau region. The partially purified enzyme also exhibited hysteresis and the hysteretic response, a function of protein concentration, was abolished by preincubation with carbamyl phosphate and enhanced by preincubation with UMP. All these observations are compatible with a postulation that the enzyme activity may be regulated by slow reversible association-dissociation dependent on the interaction with allosteric ligands.
Resumo:
Serine hydroxymethyltransferase, the first enzyme in the pathway for the interconversion of one carbon compounds was purified from mung bean seedlings by ammonium sulfate fractionation, DEAE-Sephadex, Blue Sepharose CL-6B affinity chromatography and gel filteration on Sephacryl S-200. The specific activity of the enzyme, 0.73 (u mol HCHO formed/min/mg protein) was 104 times larger than the highest value reported hitherto. Saturation of tetrahydrofolate was sigmoid, whereas with serine was hyperbolic, with nH values of 1.9 and 1.0 respectively. Reduced nicotinamide adenine dinucleotide, lysine and methionine decreased, whereas nicotinamide adenine dinucleotide, adenosine 5′-monophosphate and adenosine 5′-triphosphate increased the sigmoidicity. These results suggest that serine hydroxymethyltransferase from mung bean is a regulatory enzyme. H4folate; (±)-L-tetrahydrofolate
Resumo:
1. Saline extract of sheep pancreas acetone-dried powder was shown to catalyse acyl ester hydrolysis of spinach leaf galactosyl diglycerides and also galactosylglucosyl diglyceride of Lactobacillus casei. 2. Sodium deoxycholate stimulated the enzyme activity. Ca2+ had no effect on the hydrolysis of monogalactosyl diglyceride, but it enhanced that of digalactosyl diglyceride. When added together, there was considerably less activity with both the substrates. 3. Optimal hydrolysis was observed at pH7.2. 4. The initial point of hydrolysis was at position-1, leading to the formation of monogalactosyl monoglyceride and digalactosyl monoglyceride. Further hydrolysis to the corresponding galactosylglycerols and later to galactose and glycerol was also observed, indicating the presence of a- and b-galactosidases in the enzyme preparation. 5. Formation of monogalactosyl diglyceride from digalactosyl diglyceride by the action of a-galactosidase was noted. 6. Monogalactosyl diglyceride was also hydrolysed by b-galactosidase to a limited extent, giving rise to diacylglycerol and galactose. 7. Attempts at purification of monogalactosyl diglyceride acyl hydrolase by using protamine sulphate treatment, Sephadex G-100 filtration and DEAE-cellulose chromatography gave a partially purified enzyme which showed 9- and 81-fold higher specific activity towards monogalactosyl diglyceride and digalactosyl diglyceride respectively. This still showed acyl ester hydrolysis activity towards methyl oleate, phosphatidylcholine and triacylglycerol. 8. When sheep, rat and guinea-pig tissues were compared, guinea-pig tissues showed the highest activity towards both monogalactosyl diglyceride and digalactosyl diglyceride. In all the species pancreas showed higher activity than intestine.