974 resultados para energy-aware
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
Uma nova área tecnológica está em crescente desenvolvimento. Esta área, denominada de internet das coisas, surge na necessidade de interligar vários objetos para uma melhoria a nível de serviços ou necessidades por parte dos utilizadores. Esta dissertação concentra-se numa área específica da tecnologia internet das coisas que é a sensorização. Esta rede de sensorização é implementada pelo projeto europeu denominado de Future Cities [1] onde se cria uma infraestrutura de investigação e validação de projetos e serviços inteligentes na cidade do Porto. O trabalho realizado nesta dissertação insere-se numa das plataformas existentes nessa rede de sensorização: a plataforma de sensores ambientais intitulada de UrbanSense. Estes sensores ambientais que estão incorporados em Data Collect Unit (DCU), também denominados por nós, medem variáveis ambientais tais como a temperatura, humidade, ozono e monóxido de carbono. No entanto, os nós têm recursos limitados em termos de energia, processamento e memória. Apesar das grandes evoluções a nível de armazenamento e de processamento, a nível energético, nomeadamente nas baterias, não existe ainda uma evolução tão notável, limitando a sua operacionalidade [2]. Esta tese foca-se, essencialmente, na melhoria do desempenho energético da rede de sensores UrbanSense. A principal contribuição é uma adaptação do protocolo de redes Ad Hoc OLSR (Optimized Link State Routing Protocol) para ser usado por nós alimentados a energia renovável, de forma a aumentar a vida útil dos nós da rede de sensorização. Com esta contribuição é possível obter um maior número de dados durante períodos de tempo mais longos, aproximadamente 10 horas relativamente às 7 horas anteriores, resultando numa maior recolha e envio dos mesmos com uma taxa superior, cerca de 500 KB/s. Existindo deste modo uma aproximação analítica dos vários parâmetros existentes na rede de sensorização. Contudo, o aumento do tempo de vida útil dos nós sensores com recurso à energia renovável, nomeadamente, energia solar, incrementa o seu peso e tamanho que limita a sua mobilidade. Com o referido acréscimo a determinar e a limitar a sua mobilidade exigindo, por isso, um planeamento prévio da sua localização. Numa primeira fase do trabalho analisou-se o consumo da DCU, visto serem estes a base na infraestrutura e comunicando entre si por WiFi ou 3G. Após uma análise dos protocolos de routing com iv suporte para parametrização energética, a escolha recaiu sobre o protocolo OLSR devido à maturidade e compatibilidade com o sistema atual da DCU, pois apesar de existirem outros protocolos, a implementação dos mesmos, não se encontram disponível como software aberto. Para a validação do trabalho realizado na presente dissertação, é realizado um ensaio prévio sem a energia renovável, para permitir caracterização de limitações do sistema. Com este ensaio, tornou-se possível verificar a compatibilidade entre os vários materiais e ajustamento de estratégias. Num segundo teste de validação é concretizado um ensaio real do sistema com 4 nós a comunicar, usando o protocolo com eficiência energética. O protocolo é avaliado em termos de aumento do tempo de vida útil do nó e da taxa de transferência. O desenvolvimento da análise e da adaptação do protocolo de rede Ad Hoc oferece uma maior longevidade em termos de tempo de vida útil, comparando ao que existe durante o processamento de envio de dados. Apesar do tempo de longevidade ser inferior, quando o parâmetro energético se encontra por omissão com o fator 3, a realização da adaptação do sistema conforme a energia, oferece uma taxa de transferência maior num período mais longo. Este é um fator favorável para a abertura de novos serviços de envio de dados em tempo real ou envio de ficheiros com um tamanho mais elevado.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
This talk explores how the runtime system and operating system can leverage metrics that express the significance and resilience of application components in order to reduce the energy footprint of parallel applications. We will explore in particular how software can tolerate and indeed exploit higher error rates in future processors and memory technologies that may operate outside their safe margins.
Resumo:
The ability to use Software Defined Radio (SDR) in the civilian mobile applications will make it possible for the next generation of mobile devices to handle multi-standard personal wireless devices and ubiquitous wireless devices. The original military standard created many beneficial characteristics for SDR, but resulted in a number of disadvantages as well. Many challenges in commercializing SDR are still the subject of interest in the software radio research community. Four main issues that have been already addressed are performance, size, weight, and power. This investigation presents an in-depth study of SDR inter-components communications in terms of total link delay related to the number of components and packet sizes in systems based on Software Communication Architecture (SCA). The study is based on the investigation of the controlled environment platform. Results suggest that the total link delay does not linearly increase with the number of components and the packet sizes. The closed form expression of the delay was modeled using a logistic function in terms of the number of components and packet sizes. The model performed well when the number of components was large. Based upon the mobility applications, energy consumption has become one of the most crucial limitations. SDR will not only provide flexibility of multi-protocol support, but this desirable feature will also bring a choice of mobile protocols. Having such a variety of choices available creates a problem in the selection of the most appropriate protocol to transmit. An investigation in a real-time algorithm to optimize energy efficiency was also performed. Communication energy models were used including switching estimation to develop a waveform selection algorithm. Simulations were performed to validate the concept.
Resumo:
The problem of delay-constrained, energy-efficient broadcast in cooperative wireless networks is NP-complete. While centralised setting allows some heuristic solutions, designing heuristics in distributed implementation poses significant challenges. This is more so in wireless sensor networks (WSNs) where nodes are deployed randomly and topology changes dynamically due to node failure/join and environment conditions. This paper demonstrates that careful design of network infrastructure can achieve guaranteed delay bounds and energy-efficiency, and even meet quality of service requirements during broadcast. The paper makes three prime contributions. First, we present an optimal lower bound on energy consumption for broadcast that is tighter than what has been previously proposed. Next, iSteiner, a lightweight, distributed and deterministic algorithm for creation of network infrastructure is discussed. iPercolate is the algorithm that exploits this structure to cooperatively broadcast information with guaranteed delivery and delay bounds, while allowing real-time traffic to pass undisturbed.
Resumo:
In this paper, we present a unified approach to an energy-efficient variation-tolerant design of Discrete Wavelet Transform (DWT) in the context of image processing applications. It is to be noted that it is not necessary to produce exactly correct numerical outputs in most image processing applications. We exploit this important feature and propose a design methodology for DWT which shows energy quality tradeoffs at each level of design hierarchy starting from the algorithm level down to the architecture and circuit levels by taking advantage of the limited perceptual ability of the Human Visual System. A unique feature of this design methodology is that it guarantees robustness under process variability and facilitates aggressive voltage over-scaling. Simulation results show significant energy savings (74% - 83%) with minor degradations in output image quality and avert catastrophic failures under process variations compared to a conventional design. © 2010 IEEE.
Resumo:
We introduce a task-based programming model and runtime system that exploit the observation that not all parts of a program are equally significant for the accuracy of the end-result, in order to trade off the quality of program outputs for increased energy-efficiency. This is done in a structured and flexible way, allowing for easy exploitation of different points in the quality/energy space, without adversely affecting application performance. The runtime system can apply a number of different policies to decide whether it will execute less-significant tasks accurately or approximately.
The experimental evaluation indicates that our system can achieve an energy reduction of up to 83% compared with a fully accurate execution and up to 35% compared with an approximate version employing loop perforation. At the same time, our approach always results in graceful quality degradation.
Resumo:
Thermal effects are rapidly gaining importance in nanometer heterogeneous integrated systems. Increased power density, coupled with spatio-temporal variability of chip workload, cause lateral and vertical temperature non-uniformities (variations) in the chip structure. The assumption of an uniform temperature for a large circuit leads to inaccurate determination of key design parameters. To improve design quality, we need precise estimation of temperature at detailed spatial resolution which is very computationally intensive. Consequently, thermal analysis of the designs needs to be done at multiple levels of granularity. To further investigate the flow of chip/package thermal analysis we exploit the Intel Single Chip Cloud Computer (SCC) and propose a methodology for calibration of SCC on-die temperature sensors. We also develop an infrastructure for online monitoring of SCC temperature sensor readings and SCC power consumption. Having the thermal simulation tool in hand, we propose MiMAPT, an approach for analyzing delay, power and temperature in digital integrated circuits. MiMAPT integrates seamlessly into industrial Front-end and Back-end chip design flows. It accounts for temperature non-uniformities and self-heating while performing analysis. Furthermore, we extend the temperature variation aware analysis of designs to 3D MPSoCs with Wide-I/O DRAM. We improve the DRAM refresh power by considering the lateral and vertical temperature variations in the 3D structure and adapting the per-DRAM-bank refresh period accordingly. We develop an advanced virtual platform which models the performance, power, and thermal behavior of a 3D-integrated MPSoC with Wide-I/O DRAMs in detail. Moving towards real-world multi-core heterogeneous SoC designs, a reconfigurable heterogeneous platform (ZYNQ) is exploited to further study the performance and energy efficiency of various CPU-accelerator data sharing methods in heterogeneous hardware architectures. A complete hardware accelerator featuring clusters of OpenRISC CPUs, with dynamic address remapping capability is built and verified on a real hardware.
Resumo:
Reducing the energy consumption for computation and cooling in servers is a major challenge considering the data center energy costs today. To ensure energy-efficient operation of servers in data centers, the relationship among computa- tional power, temperature, leakage, and cooling power needs to be analyzed. By means of an innovative setup that enables monitoring and controlling the computing and cooling power consumption separately on a commercial enterprise server, this paper studies temperature-leakage-energy tradeoffs, obtaining an empirical model for the leakage component. Using this model, we design a controller that continuously seeks and settles at the optimal fan speed to minimize the energy consumption for a given workload. We run a customized dynamic load-synthesis tool to stress the system. Our proposed cooling controller achieves up to 9% energy savings and 30W reduction in peak power in comparison to the default cooling control scheme.
Resumo:
The computational and cooling power demands of enterprise servers are increasing at an unsustainable rate. Understanding the relationship between computational power, temperature, leakage, and cooling power is crucial to enable energy-efficient operation at the server and data center levels. This paper develops empirical models to estimate the contributions of static and dynamic power consumption in enterprise servers for a wide range of workloads, and analyzes the interactions between temperature, leakage, and cooling power for various workload allocation policies. We propose a cooling management policy that minimizes the server energy consumption by setting the optimum fan speed during runtime. Our experimental results on a presently shipping enterprise server demonstrate that including leakage awareness in workload and cooling management provides additional energy savings without any impact on performance.
Resumo:
Densification is a key to greater throughput in cellular networks. The full potential of coordinated multipoint (CoMP) can be realized by massive multiple-input multiple-output (MIMO) systems, where each base station (BS) has very many antennas. However, the improved throughput comes at the price of more infrastructure; hardware cost and circuit power consumption scale linearly/affinely with the number of antennas. In this paper, we show that one can make the circuit power increase with only the square root of the number of antennas by circuit-aware system design. To this end, we derive achievable user rates for a system model with hardware imperfections and show how the level of imperfections can be gradually increased while maintaining high throughput. The connection between this scaling law and the circuit power consumption is established for different circuits at the BS.
Resumo:
Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014