961 resultados para energy homeostasis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In view of the growing health problem associated with obesity, clarification of the regulation of energy homeostasis is important. Peripheral signals, such as ghrelin and leptin, have been shown to influence energy homeostasis. Nutrients and physical exercise, in turn, influence hormone levels. Data on the hormonal response to physical exercise (standardized negative energy balance) after high-fat (HF) or low-fat (LF) diet with identical carbohydrate intake are currently not available. The aim of the study was to investigate whether a short-term dietary intervention with HF and LF affects ghrelin and leptin levels and their modulators, GH, insulin and cortisol, before and during aerobic exercise. Eleven healthy, endurance-trained male athletes (W(max) 365 +/- 29 W) were investigated twice in a randomized crossover design following two types of diet: 1. LF - 0.5 g fat/kg body weight (BW) per day for 2.5 days; 2. HF - 0.5 g fat/kg BW per day for 1 day followed by 3.5 g fat/kg BW per day for 1.5 days. After a standardized carbohydrate snack in the morning, metabolites and hormones (GH, ghrelin, leptin, insulin and cortisol) were measured before and at regular intervals throughout a 3-h aerobic exercise test on a cycloergometer at 50% of W(max). Diet did not significantly affect GH and cortisol concentrations during exercise but resulted in a significant increase in ghrelin and decrease in leptin concentrations after LF compared with HF diet (area under the curve (AUC) ghrelin LF vs HF: P < 0.03; AUC leptin LF vs HF: P < 0.02, Wilcoxon rank test). These data suggest that acute negative energy balance induced by exercise elicits a hormonal response with opposite changes of ghrelin and leptin. In addition, the hormonal response is modulated by the preceding intake of fat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disuse osteoporosis is a condition in which reduced mechanical loading (e.g. bed-rest, immobilization, or paralysis) results in unbalanced bone turnover. The American black bear is a unique, naturally occurring model for the prevention of disuse osteoporosis. Bears remain mostly inactive for up to half a year of hibernation annually, yet they do not lose bone mechanical strength or structural properties throughout hibernation. The long-term goal of this study is to determine the biological mechanism through which bears maintain bone during hibernation. This mechanism could pinpoint new signaling pathway targets for the development of drugs for osteoporosis prevention. In this study, bone specific alkaline phosphatase (BSALP), a marker of osteoblast activity, and tartrate resistant acid phosphatase (TRACP), a marker of osteoclast number, were quantified in the serum of hibernating and active black bears. BSALP and TRACP decreased during hibernation, suggesting a balanced reduction in bone turnover. This decrease in BSALP and TRACP were correlated positively to serum adiponectin and inversely to serum neuropeptide Y, suggesting a possible role of these hormones in suppressing bone turnover during hibernation. Osteocalcin (OCN) and undercarboxylated OCN increased dramatically in the serum of hibernating bears. These increases were inversely correlated with adiponectin, glucose, and serotonin, suggesting that OCN may have a unique role in energy homeostasis during hibernation. Finally, MC3T3-E1 osteoblasts were cultured in the serum from active and hibernating bears, and seasonal cell responses were quantified. Cells cultured in serum from hibernating bears had a reduced caspase-3/7 response, and more living cells, after apoptotic threat. The caspase-3/7 response was positively correlated to serum adiponectin and to gene expression of OCN and Runx2, suggesting that reduced caspase-3/7 activity may be related to the reduced differentiation potential of osteoblasts in hibernation serum, and that adiponectin is a potential effector hormone. In summary, the activities of osteoblasts and osteoclasts are reduced during hibernation in bears. This reduced turnover is due, in part, to hormonal control. Further study of potential effectors adiponectin and neuropeptide Y may provide insight into the biological mechanism through which bears maintain bone throughout hibernation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rising levels of atmospheric CO2 lead to acidification of the ocean and alter seawater carbonate chemistry, which can negatively impact calcifying organisms, including mollusks. In estuaries, exposure to elevated CO2 levels often co-occurs with other stressors, such as reduced salinity, which enhances the acidification trend, affects ion and acid-base regulation of estuarine calcifiers and modifies their response to ocean acidification. We studied the interactive effects of salinity and partial pressure of CO2 (PCO2) on biomineralization and energy homeostasis in juveniles of the eastern oyster, Crassostrea virginica, a common estuarine bivalve. Juveniles were exposed for 11 weeks to one of two environmentally relevant salinities (30 or 15 PSU) either at current atmospheric PCO2 (400 µatm, normocapnia) or PCO2 projected by moderate IPCC scenarios for the year 2100 (700-800 µatm, hypercapnia). Exposure of the juvenile oysters to elevated PCO2 and/or low salinity led to a significant increase in mortality, reduction of tissue energy stores (glycogen and lipid) and negative soft tissue growth, indicating energy deficiency. Interestingly, tissue ATP levels were not affected by exposure to changing salinity and PCO2, suggesting that juvenile oysters maintain their cellular energy status at the expense of lipid and glycogen stores. At the same time, no compensatory upregulation of carbonic anhydrase activity was found under the conditions of low salinity and high PCO2. Metabolic profiling using magnetic resonance spectroscopy revealed altered metabolite status following low salinity exposure; specifically, acetate levels were lower in hypercapnic than in normocapnic individuals at low salinity. Combined exposure to hypercapnia and low salinity negatively affected mechanical properties of shells of the juveniles, resulting in reduced hardness and fracture resistance. Thus, our data suggest that the combined effects of elevated PCO2 and fluctuating salinity may jeopardize the survival of eastern oysters because of weakening of their shells and increased energy consumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adipose differentiation is an important part of the energy homeostasis system of higher organisms. Recent data have suggested that this process is controlled by an interplay of transcription factors including PPARγ, the C/EBPs, and ADD1/SREBP1. Although these factors interact functionally to initiate the program of differentiation, there are no data concerning specific mechanisms of interaction. We show here that the expression of ADD1/SREBP1 specifically increases the activity of PPARγ but not other isoforms, PPARα, or PPARδ. This activation occurs through the ligand-binding domain of PPARγ when it is fused to the DNA-binding domain of Gal4. The stimulation of PPARγ by ADD1/SREBP1 does not require coexpression in the same cells; supernatants from cultures that express ADD1/SREBP1 augment the transcriptional activity of PPARγ. Finally, we demonstrate directly that cells expressing ADD1/SREBP1 produce and secrete lipid molecule(s) that bind directly to PPARγ, displacing the binding of radioactive thiazolidinedione ligands. These data establish that ADD1/SREBP1 can control the production of endogenous ligand(s) for PPARγ and suggest a mechanism for coordinating the actions of these adipogenic factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Elevation of the neuropeptide corticotropin-releasing factor (CRF) in the brain is associated with a reduction of food intake and body weight gain in normal and obese animals. A protein that binds CRF and the related peptide, urocortin, with high affinity, CRF-binding protein (CRF-BP), may play a role in energy homeostasis by inactivating members of this peptide family in ingestive and metabolic regulatory brain regions. Intracerebroventricular administration in rats of the high-affinity CRF-BP ligand inhibitor, rat/human CRF (6-33), which dissociates CRF or urocortin from CRF-BP and increases endogenous brain levels of “free” CRF or urocortin significantly blunted exaggerated weight gain in Zucker obese subjects and in animals withdrawn from chronic nicotine. Chronic administration of CRF suppressed weight gain nonselectively by 60% in both Zucker obese and lean control rats, whereas CRF-BP ligand inhibitor treatment significantly reduced weight gain in obese subjects, without altering weight gain in lean control subjects. Nicotine abstinent subjects, but not nicotine-naive controls, experienced a 35% appetite suppression and a 25% weight gain reduction following acute and chronic administration, respectively, of CRF-BP ligand inhibitor. In marked contrast to the effects of a CRF-receptor agonist, the CRF-BP ligand inhibitor did not stimulate adrenocorticotropic hormone secretion or elevate heart rate and blood pressure. These results provide support for the hypothesis that the CRF-BP may function within the brain to limit selected actions of CRF and/or urocortin. Furthermore, CRF-BP may represent a novel and functionally selective target for the symptomatic treatment of excessive weight gain associated with obesity of multiple etiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adipocyte complement-related protein (30 kDa) (Acrp30), a secreted protein of unknown function, is exclusively expressed in differentiated adipocytes; its mRNA is decreased in obese humans and mice. Here we describe novel pharmacological properties of the protease-generated globular head domain of Acrp30 (gAcrp30). Acute treatment of mice with gAcrp30 significantly decreased the elevated levels of plasma free fatty acids caused either by administration of a high fat test meal or by i.v. injection of Intralipid. This effect of gAcrp30 was caused, at least in part, by an acute increase in fatty acid oxidation by muscle. As a result, daily administration of a very low dose of gAcrp30 to mice consuming a high-fat/sucrose diet caused profound and sustainable weight reduction without affecting food intake. Thus, gAcrp30 is a novel pharmacological compound that controls energy homeostasis and exerts its effect primarily at the peripheral level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Melanin-concentrating hormone (MCH) is a 19-aa cyclic neuropeptide originally isolated from chum salmon pituitaries. Besides its effects on the aggregation of melanophores in fish several lines of evidence suggest that in mammals MCH functions as a regulator of energy homeostasis. Recently, several groups reported the identification of an orphan G protein-coupled receptor as a receptor for MCH (MCH-1R). We hereby report the identification of a second human MCH receptor termed MCH-2R, which shares about 38% amino acid identity with MCH-1R. MCH-2R displayed high-affinity MCH binding, resulting in inositol phosphate turnover and release of intracellular calcium in mammalian cells. In contrast to MCH-1R, MCH-2R signaling is not sensitive to pertussis toxin and MCH-2R cannot reduce forskolin-stimulated cAMP production, suggesting an exclusive Gαq coupling of the MCH-2R in cell-based systems. Northern blot and in situ hybridization analysis of human and monkey tissue shows that expression of MCH-2R mRNA is restricted to several regions of the brain, including the arcuate nucleus and the ventral medial hypothalamus, areas implicated in regulation of body weight. In addition, the human MCH-2R gene was mapped to the long arm of chromosome 6 at band 6q16.2–16.3, a region reported to be associated with cytogenetic abnormalities of obese patients. The characterization of a second mammalian G protein-coupled receptor for MCH potentially indicates that the control of energy homeostasis in mammals by the MCH neuropeptide system may be more complex than initially anticipated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of total body weight and 50% of energy expenditure and is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. Excessive caloric intake is sensed by the brain and induces beta-adrenergic receptor (beta-AR)- mediated adaptive thermogenesis. beta-AR null mice develop severe obesity on a high fat diet. However, the target gene(s), target tissues(s), and molecular mechanism involved remain obscure. We observed that 30 - 60 min of beta-AR agonist ( isoprenaline) treatment of C2C12 skeletal muscle cells strikingly activated (> 100-fold) the expression of the mRNA encoding the nuclear hormone receptor, Nur77. In contrast, the expression of other nuclear receptors that regulate lipid and carbohydrate metabolism was not induced. Stable transfection of Nur77-specific small interfering RNAs (siNur77) into skeletal muscle cells repressed endogenous Nur77 mRNA expression. Moreover, we observed attenuation of gene and protein expression associated with the regulation of energy expenditure and lipid homeostasis, for example AMP-activated protein kinase gamma 3, UCP3, CD36,adiponectin receptor 2, GLUT4, and caveolin-3. Attenuation of Nur77 expression resulted in decreased lipolysis. Finally, in concordance with the cell culture model, injection and electrotransfer of siNur77 into mouse tibialis cranialis muscle resulted in the repression of UCP3 mRNA expression. This study demonstrates regulatory cross-talk between the nuclear hormone receptor and beta-AR signaling pathways. Moreover, it suggests Nur77 modulates the expression of genes that are key regulators of skeletal muscle lipid and energy homeostasis. In conclusion, we speculate that Nur77 agonists would stimulate lipolysis and increase energy expenditure in skeletal muscle and suggest selective activators of Nur77 may have therapeutic utility in the treatment of obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leptin and Y2 receptors on hypothalamic NPY neurons mediate leptin effects on energy homeostasis; however, their interaction in modulating osteoblast activity is not established. Here, direct testing of this possibility indicates distinct mechanisms of action for leptin anti-osteogenic and Y2(-/-) anabolic pathways in modulating bone formation. Introduction: Central enhancement of bone formation by hypothalamic neurons is observed in leptin-deficient oblob and Y2 receptor null mice. Similar elevation in central neuropeptide Y (NPY) expression and effects on osteoblast activity in these two models suggest a shared pathway between leptin and Y2 receptors in the central control of bone physiology. The aim of this study was to test whether the leptin and Y2 receptor pathways regulate bone by the same or distinct mechanisms. Materials and Methods: The interaction of concomitant leptin and Y2 receptor deficiency in controlling bone was examined in Y2(-/-) oblob double mutant mice, to determine whether leptin and Y2 receptor deficiency have additive effects. Interaction between leptin excess and Y2 receptor deletion was examined using recombinant adeno-associated viral vector overproduction of NPY (AAV-NPY) to produce weight gain and thus leptin excess in adult Y2(-/-) mice. Cancellous bone volume and bone cell function were assessed. Results: Osteoblast activity was comparably elevated in oblob, Y2(-/-), and Y2(-/-) oblob mice. However, greater bone resorption in oblob and Y2(-/-) oblob mice reduced cancellous bone volume compared with Y2(-/-). Both wildtype and Y2(-/-) AAV-NPY mice exhibited marked elevation of white adipose tissue accumulation and hence leptin expression, thereby reducing osteoblast activity. Despite this anti-osteogenic leptin effect in the obese AAV-NPY model, osteoblast activity in Y2(-/-) AAV-NPY mice remained significantly greater than in wildtype AAV-NPY mice. Conclusions: This study suggests that NPY is not a key regulator of the leptin-dependent osteoblast activity, because both the leptin-deficient stimulation of bone formation and the excess leptin inhibition of bone formation can occur in the presence of high hypothalamic NPY. The Y2(-/-) pathway acts consistently to stimulate bone formation; in contrast, leptin continues to suppress bone formation as circulating levels increase. As a result, they act increasingly in opposition as obesity becomes more marked. Thus, in the absence of leptin, the cancellous bone response to loss of Y2 receptor and leptin activity can not be distinguished. However, as leptin levels increase to physiological levels, distinct signaling pathways are revealed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nesfatin-1 is a recently identified anorexigenic peptide derived from its precursor protein, nonesterified fatty acid/nucleobindin 2 (NUCB2). Although the hypothalamus is pivotal for the maintenance of energy homeostasis, adipose tissue plays an important role in the integration of metabolic activity and energy balance by communicating with peripheral organs and the brain via adipokines. Currently no data exist on nesfatin-1 expression, regulation, and secretion in adipose tissue. We therefore investigated NUCB2/nesfatin-1 gene and protein expression in human and murine adipose tissue depots. Additionally, the effects of insulin, dexamethasone, and inflammatory cytokines and the impact of food deprivation and obesity on nesfatin-1 expression were studied by quantitative RT-PCR and Western blotting. We present data showing NUCB2 mRNA (P < 0.001), nesfatin-1 intracellular protein (P < 0.001), and secretion (P < 0.01) were significantly higher in sc adipose tissue compared with other depots. Also, nesfatin-1 protein expression was significantly increased in high-fat-fed mice (P < 0.01) and reduced under food deprivation (P < 0.01) compared with controls. Stimulation of sc adipose tissue explants with inflammatory cytokines (TNFa and IL-6), insulin, and dexamethasone resulted in a marked increase in intracellular nesfatin-1 levels. Furthermore, we present evidence that the secretion of nesfatin-1 into the culture media was dramatically increased during the differentiation of 3T3-L1 preadipocytes into adipocytes (P < 0.001) and after treatments with TNF-a, IL-6, insulin, and dexamethasone (P < 0.01). In addition, circulating nesfatin-1 levels were higher in high-fat-fed mice (P < 0.05) and showed positive correlation with body mass index in human. We report that nesfatin-1 is a novel depot specific adipokine preferentially produced by sc tissue, with obesity- and food deprivation-regulated expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Models of Alzheimer’s disease (AD) have provided useful insights into the pathogenesis and mechanistic pathways that lead to its development. One emerging idea about AD is that it may be described as a hypometabolic disorder due to the reduction of glucose uptake in AD brains. Inappropriate processing of Amyloid Precursor Protein (APP) is considered central to the initiation and progression of the disease. Although the exact role of APP misprocessing is unclear, it may play a role in neuronal metabolism before the onset of neurodegeneration. To investigate the potential role of APP in neuronal metabolism, the SHSY5Y neuroblastoma cell line was used to generate cell lines that stably overexpress wild type APP695 or express Swedish mutated-APP observed in familial AD (FAD), both under the control of the neuronal promoter, Synapsin I. The effects of APP on glucose uptake, cellular stress and energy homeostasis were studied extensively. It was found that APP-overexpressing cells exhibited decreased glucose uptake with changes in basal oxygen consumption in comparison to control cell lines. Similar studies were also performed in fibroblasts taken from FAD patients compared with control fibroblasts. Previous studies found FAD-derived fibroblasts displayed altered metabolic profiles, calcium homeostasis and oxidative stress when compared to controls. As such, in this study fibroblasts were studied in terms of their ability to metabolise glucose and their mitochondrial function. Results show that FAD-derived fibroblasts demonstrate no differences in mitochondrial function, or response to oxidative stress compared to control fibroblasts. However, control fibroblasts treated with Aβ1-42 demonstrated changes in glucose uptake. This study highlights the importance of APP expression within non-neuronal cell lines, suggesting that whilst AD is considered a brain-associated disorder, peripheral effects in non-neuronal cell types should also be considered when studying the effects of Aβ on metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schedule-Induced Polydipsia (SIP) is an animal model of adjunctive drinking induced when a hungry rat receives food on a fixed interval of time. This model has been implemented as a model of compulsive behaviour and may represent a powerful tool to understand the neural mechanisms of compulsion. The bed nucleus of the stria terminalis (BNST) is thought to translate challenges to energy homeostasis into consummatory behaviours, and is therefore likely to contribute to drinking behaviours displayed by food restricted rats in the SIP paradigm. Furthermore, the BNST seems implicated in various compulsive behaviors, including compulsive water drinking in rats. Therefore, the goal of this project was to determine whether compulsive drinking in the SIP paradigm was associated with alterations in transmission at oval BNST (ovBNST) synapses. Rats undergoing the SIP procedure had restricted food access (1-hours/day) for a total of 29 days. After 7 days of food restriction and for the next 21 consecutive days, the rats had daily 2-hour access to operant conditioning chambers where they were presented with a 45-mg food pellet every minute. Water consumed during these 2-hour sessions was measured and the rats that drank 15 ml or more water for a minimum of 3 consecutive days were considered High Drinkers (HD; n=17) or otherwise, Low Drinkers (LD; n=13). Brain slices whole-cell patch clamp recordings conducted 18-hours after the last SIP training showed that chronic food restriction changed low frequency stimulation (LFS) - induced long-term potentiation of ovBNST inhibitory synaptic transmission (iLTP) into LFS - induced long-term depression (iLTD) in a majority of neurons, regardless of drinking behaviours. However, ad libitum access to food between the last day of SIP training and brain slice recordings (18-hour refeed) rescued LFS-induced iLTP in LD but not in HD, suggesting that impaired bi-directional plasticity of ovBNST synapses may contribute to compulsive drinking in the SIP paradigm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’obésité est un facteur de risque lié à des problèmes physiques, émotionnels et comportementaux. Aujourd’hui, l’alimentation est composée d’un régime typiquement occidental «Western diet» qui est riche en acides gras saturés (AGS) et pauvre en acides gras polyinsaturés (AGPI) tel que les oméga-3 (N-3) et occasionnant un déséquilibre du ratio alimentaire N-6/N-3. Ce déséquilibre est une des causes de la prévalence des maladies mentales y compris celles des troubles de l'humeur et de l’anxiété. L’acide docosahexaénoïque (ADH, 22: 6 n-3) est l’acide gras (AG) le plus abondant dans le cerveau et son accumulation est particulièrement élevée pendant la période périnatale. Il joue un rôle important dans le développement neuronal et d'autres fonctions du cerveau tel l'apprentissage et la mémoire. Des perturbations de l’environnement périnatal peuvent influencer à très long terme l’avenir de la descendance en la rendant plus susceptible de développer des problèmes d’obésité dans un contexte nutritionnel riche. On ignore cependant si le déficit alimentaire chez la mère et particulièrement en ADH aura un impact sur la motivation alimentaire de la progéniture. L’objectif principal de cette thèse est d’étudier le rôle potentiel des N-3 sur la balance énergétique, la motivation alimentaire, la dépression et le niveau d’anxiété des descendants de souris mâles adultes assujetties à une alimentation riche en gras. Nos données ont démontré qu‘un régime maternel déficitaire en ADH durant la période périnatale incitait la descendance à fournir plus d’effort afin d’obtenir un aliment palatable. Ceci entraînerait un dérèglement de l’homéostasie énergétique en augmentant le gain de poids et en diminuant l’activité locomotrice tout en exacerbant le comportement de type anxieux dès que les souris sont exposées à un milieu obésogène. Les acides gras libres (AGL) sont des nutriments essentiels fonctionnant comme des molécules de signalisation dans le cerveau en ayant des récepteurs qui jouent un rôle important dans le contrôle du métabolisme énergétique. Parmi eux, on distingue un récepteur couplé à la protéine G (GPCR), le GPR120. Ce récepteur activé par les AGPI ω-3 intervient dans les mécanismes anti-inflammatoires et insulino-résistants via les N-3. Une mutation dans le gène GPR120 occasionnée par une réduction de l’activité de signalisation du gène est liée à l’obésité humaine. L'objectif premier de cette deuxième étude était d’évaluer l'impact de la stimulation pharmacologique de GPR120 dans le système nerveux central (SNC) sur l'alimentation, les dépenses d'énergie, le comportement de type anxieux et la récompense alimentaire. Nos résultats démontrent qu’une injection centrale aiguë d'agoniste GPR120 III réduit la prise alimentaire ad libitum et la motivation alimentaire pour un aliment riche en gras et en sucre; ainsi que les comportements de type anxieux. L’injection centrale chronique (21 jours) de ce même agoniste GPR120 III transmis par une pompe osmotique a démontré que les souris placées sous diète hypercalorique (HFD n’ont présenté aucune modification lors de la prise alimentaire ni de gain de poids mais qu’il y avait comparativement au groupe de véhicule, une réduction du comportement de type anxieux, que ce soit dans le labyrinthe en croix surélevé (LCS) ou dans le test à champ ouvert (OFT). L’ADH est reconnu pour ses propriétés anorexigènes au niveau central. De plus, la stimulation des récepteurs de GPR120 au niveau du cerveau avec un agoniste synthétique peut produire un effet intense intervenir sur le comportement lié à l'alimentation des rongeurs. Trouver une approche visant à contrôler à la fois la neuroinflammation, la récompense alimentaire et les troubles émotionnels aiderait assurément au traitement de l'obésité et du diabète de type 2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Altered tissue fatty acid (FA) composition may affect mechanisms involved in the control of energy homeostasis, including central insulin actions. In rats fed either standard chow or a lard-enriched chow (high in saturated/low in polyunsaturated FA, HS-LP) for eight weeks, we examined the FA composition of blood, hypothalamus, liver, and retroperitoneal, epididymal and mesenteric adipose tissues. Insulin-induced hypophagia and hypothalamic signaling were evaluated after intracerebroventricular insulin injection. HS-LP feeding increased saturated FA content in adipose tissues and serum while it decreased polyunsaturated FA content of adipose tissues, serum, and liver. Hypothalamic C20:5n-3 and C20:3n-6 contents increased while monounsaturated FA content decreased. HS-LP rats showed hyperglycemia, impaired insulin-induced hypophagia and hypothalamic insulin signaling. The results showed that, upon HS-LP feeding, peripheral tissues underwent potentially deleterious alterations in their FA composition, whist the hypothalamus was relatively preserved. However, hypothalamic insulin signaling and hypophagia were drastically impaired. These findings suggest that impairment of hypothalamic insulin actions by HS-LP feeding was not related to tissue FA composition.