885 resultados para elliptical human detection
Resumo:
The nucleoside analogue cordycepin (3'-deoxyodenosine, 3'-dA), one of the components of cordyceps militaris, has been shown to inhibit the growth of various tumor cells. However, the probable mechanism is still obscure. In this study, the inhibition of cell growth and changes in protein expression induced by cordycepin were investigated in BEL-7402 cells. Using the MTT assay and flow cytometry, we found that cordycepin inhibits cell viability and induces apoptosis in BEL 7402 cells. Additionally. the proteins were separated using two-dimensional polyacrylamide gel electrophoresis, and eight proteins were found to be significantly, affected by cordycepin compared to untreated control; among them, two were downregulated and six were upregulated. Of the eight proteins, six were identified with peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after in-gel trypsin digestion. These proteins are involved in various aspects of cellular metabolism. It is suggested that the effect of cordycepin on the growth of tumor cells is significantly related to the metabolism-associated protein expression induced by cordycepin. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.
Resumo:
Background: HIV infection leads to a decreasing immune response, thereby facilitating the appearance of other infections, one of the most important ones being HPV. However, studies are needed for determining associations between immunodeficiency caused by HIV and/or the presence of HPV during the course of cervical lesions and their degree of malignancy. This study describes the cytological findings revealed by the Papanicolaou test, laboratory characteristics and HPV molecular profile in women with and without HIV infection. Methods: A total of 216 HIV-positive and 1,159 HIV-negative women were invited to participate in the study; PCR was used for the molecular detection of HPV in cervical samples. Statistical analysis (such as percentages, Chi-square test and Fisher's exact test when applicable) determined human papillomavirus (HPV) infection frequency (single and multiple) and the distribution of six types of high-risk-HPV in women with and without HIV infection. Likewise, a logistic regression model was run to evaluate the relationship between HIV-HPV infection and different risk factors. Results: An association was found between the frequency of HPV infection and infection involving 2 or more HPV types (also known as multiple HPV infection) in HIV-positive women (69.0% and 54.2%, respectively); such frequency was greater than that found in HIV-negative women (44.3% and 22.7%, respectively). Statistically significant differences were observed between both groups (p = 0.001) regarding HPV presence (both in infection and multiple HPV infection). HPV-16 was the most prevalent type in the population being studied (p = 0.001); other viral types had variable distribution in both groups (HIV-positive and HIV-negative). HPV detection was associated with <500 cell/mm(3) CD4-count (p = 0.004) and higher HIV-viral-load (p = 0.001). HPV-DNA detection, <200 cell/mm(3) CD4-count (p = 0.001), and higher HIV-viral-load (p = 0.001) were associated with abnormal cytological findings. Conclusions: The HIV-1 positive population in this study had high multiple HPV infection prevalence. The results for this population group also suggested a greater association between HPV-DNA presence and cytological findings. HPV detection, together with low CD4 count, could represent useful tools for identifying HIV-positive women at risk of developing cervical lesions.
Resumo:
Accurate head tilt detection has a large potential to aid people with disabilities in the use of human-computer interfaces and provide universal access to communication software. We show how it can be utilized to tab through links on a web page or control a video game with head motions. It may also be useful as a correction method for currently available video-based assistive technology that requires upright facial poses. Few of the existing computer vision methods that detect head rotations in and out of the image plane with reasonable accuracy can operate within the context of a real-time communication interface because the computational expense that they incur is too great. Our method uses a variety of metrics to obtain a robust head tilt estimate without incurring the computational cost of previous methods. Our system runs in real time on a computer with a 2.53 GHz processor, 256 MB of RAM and an inexpensive webcam, using only 55% of the processor cycles.
Resumo:
Microdialysis enables the chemistry of extracellular ?uid in body tissues to be measured. Extracellular proteases such as the cysteine protease, cathepsin S (CatS), are thought to facilitate astrocytoma invasion. Microdialysates obtained from human brain tumoursin vivo were subjected to cathepsin S activity and ELISA assays. Cathepsin S ELISA expression was detected in ?ve out of 10 tumour microdialysates, while activity was detected in ?ve out of 11 tumour microdialysates. Cathepsin S expression was also detected in microdialysate from the normal brain control although no activity was found in the same sample. While some re?nements to the technique are necessary, the authors demonstrate the feasibility and safety of microdialysis in human astrocytomasin vivo. Characterisation of the extracellular environment of brain tumoursin vivo using microdialysis may be a useful tool to identify the protease pro?le of brain tumours.
Resumo:
Essential to the conduct of epidemiologic studies examining aflatoxin exposure and the risk of heptocellular carcinoma, impaired growth, and acute toxicity has been the development of quantitative biomarkers of exposure to aflatoxins, particularly aflatoxin B-1. In this study, identical serum sample sets were analyzed for aflatoxin-albumin adducts by ELISA, high-performance liquid chromatography (HPLC) with fluorescence detection (HPLC-f), and HPLC with isotope dilution mass spectrometry (IDMS). The human samples analyzed were from an acute aflatoxicosis outbreak in Kenya in 2004 (n = 102) and the measured values ranged from 0.018 to 67.0, nondetectable to 13.6, and 0.002 to 17.7 ng/mg albumin for the respective methods. The Deming regression slopes for the HPLC-f and ELISA concentrations as a function of the IDMS concentrations were 0.71 (r(2) = 0.95) and 3.3 (r(2) = 0.96), respectively. When the samples were classified as cases or controls, based on clinical diagnosis, all methods were predictive of outcome (P < 0.01). Further, to evaluate assay precision, duplicate samples were prepared at three levels by dilution of an exposed human sample and were analyzed on three separate days. Excluding one assay value by ELISA and one assay by HPLC-f, the overall relative SD were 8.7%, 10.5%, and 9.4% for IDMS, HPLC-f, and ELISA, respectively. IDMS was the most sensitive technique and HPLC-f was the least sensitive method. Overall, this study shows an excellent correlation between three independent methodologies conducted in different laboratories and supports the validation of these technologies for assessment of human exposure to this environmental toxin and carcinogen.
Resumo:
The joint fluids of 37 patients with rheumatoid arthritis, eight patients with traumatic injuries to their joints, two patients with Reiter's syndrome and three patients with psoriatic arthritis were tested for the presence of B cell colony stimulating activity (B cell CSA). B cell CSA was found in all of the joint fluids from the patients with rheumatoid arthritis but in none of the joint fluids from patients with traumatic injuries to their joints or in the joint fluids from the patients with Reiter's syndrome. A trace of B cell CSA was found in the joint fluid of one of the three patients with psoriatic arthritis. There was a positive correlation (r = 0.796) between the amount of rheumatoid factor present in the joint fluids and the titre of B cell CSA. This correlation was highly significant (P less than 0.001). The B cell CSA was localized to component(s) with molecular weight ranges 115-129 kD and 64-72 kD and an isoelectric point of 6.8. Its activity was sensitive to reduction with 2-mercaptoethanol and to the oxidising action of potassium periodate.
Resumo:
An outlier removal based data cleaning technique is proposed to
clean manually pre-segmented human skin data in colour images.
The 3-dimensional colour data is projected onto three 2-dimensional
planes, from which outliers are removed. The cleaned 2 dimensional
data projections are merged to yield a 3D clean RGB data. This data
is finally used to build a look up table and a single Gaussian classifier
for the purpose of human skin detection in colour images.
Resumo:
A new immunosensor is presented for human chorionic gonadotropin (hCG), made by electrodepositing chitosan/gold-nanoparticles over graphene screen-printed electrode (SPE). The antibody was covalently bound to CS via its Fc-terminal. The assembly was controlled by electrochemical Impedance Spectroscopy (EIS) and followed by Fourier Transformed Infrared (FTIR). The hCG-immunosensor displayed linear response against the logarithm-hCG concentration for 0.1–25 ng/mL with limit of detection of 0.016 ng/mL. High selectivity was observed in blank urine and successful detection of hCG was also achieved in spiked samples of real urine from pregnant woman. The immunosensor showed good detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.
Resumo:
Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the –COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene–SPE–PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL−1 in real urine, with a detection limit of 0.286 pg mL−1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.
Resumo:
Fifty-three patients with histologically proven carcinoma were injected with highly purified [131I]-labeled goat antibodies or fragments of antibodies against carcinoembryonic antigen (CEA). Each patient was tested by external photoscanning 4, 24, 36 and 48 h after injection. In 22 patients (16 of 38 injected with intact antibodies, 5 of 13 with F(ab')2 fragments and 1 of 2 with Fab' fragments), an increased concentration of 131I radioactivity corresponding to the previously known tumor location was detected by photoscanning 36-48 h after injection. Blood pool and secreted radioactivity was determined in all patients by injecting 15 min before scanning, [99mTc]-labeled normal serum albumin and free 99mTc04-. The computerized subtraction of 99mTc from 131I radioactivity enhanced the definition of tumor localization in the 22 positive patients. However, in spite of the computerized subtraction, interpretation of the scans remained doubtful for 12 patients and was entirely negative for 19 additional patients. In order to provide a more objective evaluation for the specificity of the tumor localization of antibodies, 14 patients scheduled for tumor resection were injected simultaneously with [131I]-labeled antibodies or fragments and with [125I]-labeled normal goat IgG or fragments. After surgery, the radioactivity of the two isotopes present either in tumor or adjacent normal tissues was measured in a dual channel scintillation counter. The results showed that the antibodies or their fragments were 2-4 times more concentrated in the tumor than in the normal tissues. In addition, it was shown that the injected antibodies formed immune complexes with circulating CEA and that the amount of immune complexes detectable in serum was roughly proportional to the level of circulating CEA.